PuSH - Publikationsserver des Helmholtz Zentrums München

Frangi, A.F.* ; Rueckert, D.* ; Schnabel, J.A.* ; Niessen, W.J.*

Automatic construction of multiple-object three-dimensional statistical shape models: Application to cardiac modeling.

IEEE Trans. Med. Imaging 21, 1151-1166 (2002)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
A novel method is introduced for the generation of landmarks for three-dimensional (3-D) shapes and the construction of the corresponding 3-D statistical shape models. Automatic landmarking of a set of manual segmentations from a class of shapes is achieved by 1) construction of an atlas of the class, 2) automatic extraction of the landmarks from the atlas, and 3) subsequent propagation of these landmarks to each example shape via a volumetric nonrigid registration technique using multiresolution B-spline deformations. This approach presents some advantages over previously published methods: it can treat multiple-part structures and requires less restrictive assumptions on the structure's topology. In this paper, we address the problem of building a 3-D statistical shape model of the left and right ventricle of the heart from 3-D magnetic resonance images. The average accuracy in landmark propagation is shown to be below 2.2 mm. This application demonstrates the robustness and accuracy of the method in the presence of large shape variability and multiple objects.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter Atlas ; Cardiac Models ; Model-based Image Analysis ; Nonrigid Registration ; Statistical Shape Models
ISSN (print) / ISBN 0278-0062
e-ISSN 1558-254X
Quellenangaben Band: 21, Heft: 9, Seiten: 1151-1166 Artikelnummer: , Supplement: ,
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Verlagsort New York, NY [u.a.]
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)