Hipwell, J.H.* ; Tanner, C.* ; Crum, W.R.* ; Schnabel, J.A.* ; Hawkes, D.J.*
A new validation method for X-ray mammogram registration algorithms using a projection model of breast X-ray compression.
IEEE Trans. Med. Imaging 26, 1190-1200 (2007)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Establishing spatial correspondence between features visible in X-ray mammograms obtained at different times has great potential to aid assessment and quantitation of change in the breast indicative of malignancy. The literature contains numerous nonrigid registration algorithms developed for this purpose, but existing approaches are flawed by the assumption of inappropriate 2-D transformation models and quantitative estimation of registration accuracy is limited. In this paper, we describe a novel validation method which simulates plausible mammographic compressions of the breast using a magnetic resonance imaging (MRI) derived finite element model. By projecting the resulting known 3-D displacements into 2-D and generating pseudo-mammograms from these same compressed magnetic resonance (MR) volumes, we can generate convincing images with known 2-D displacements with which to validate a registration algorithm. We illustrate this approach by computing the accuracy for two conventional nonrigid 2-D registration algorithms applied to mammographic test images generated from three patient MR datasets. We show that the accuracy of these algorithms is close to the best achievable using a 2-D one-to-one correspondence model but that new algorithms incorporating more representative transformation models are required to achieve sufficiently accurate registrations for this application. © 2007 IEEE.
Altmetric
Weitere Metriken?
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Biomedical X-ray Imaging ; Image Registration ; Mammography ; Modeling ; Validation
Keywords plus
ISSN (print) / ISBN
0278-0062
e-ISSN
1558-254X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 26,
Heft: 9,
Seiten: 1190-1200
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Institute of Electrical and Electronics Engineers (IEEE)
Verlagsort
New York, NY [u.a.]
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
Förderungen
Copyright