Dokumente im Korb
Helmholtz Zentrum München
|
Impressum
PuSH - Publikationsserver des Helmholtz Zentrums München
Navigation
Startseite
English
Recherche
Erweiterte Suche
Durchblättern nach ...
... Zeitschriften
... Publikationstypen
... Forschungsdaten
... Erscheinungsjahr
Publikationen im Überblick
Hilfe & Kontakt
Ansprechpartner
Hilfe
Datenschutz
Babalola, K.O.* ; Patenaude, B.* ; Aljabar, P.* ; Schnabel, J.A.* ; Kennedy, D.* ; Crum, W.R.* ; Smith, S.* ; Cootes, T.* ; Jenkinson, M.* ; Rueckert, D.*
An evaluation of four automatic methods of segmenting the subcortical structures in the brain.
Neuroimage
47
, 1435-1447 (2009)
DOI
Open Access Green
möglich sobald Postprint bei der ZB eingereicht worden ist.
Abstract
Metriken
Zusatzinfos
The automation of segmentation of subcortical structures in the brain is an active research area. We have comprehensively evaluated four novel methods of fully automated segmentation of subcortical structures using volumetric, spatial overlap and distance-based measures. Two methods are atlas-based - classifier fusion and labelling (CFL) and expectation-maximisation segmentation using a brain atlas (EMS), and two incorporate statistical models of shape and appearance - profile active appearance models (PAM) and Bayesian appearance models (BAM). Each method was applied to the segmentation of 18 subcortical structures in 270 subjects from a diverse pool varying in age, disease, sex and image acquisition parameters. Our results showed that all four methods perform on par with recently published methods. CFL performed better than the others according to all three classes of metrics. In summary over all structures, the ranking by the Dice coefficient was CFL, BAM, joint EMS and PAM. The Hausdorff distance ranked the methods as CFL, joint PAM and BAM, EMS, whilst percentage absolute volumetric difference ranked them as joint CFL and PAM, joint BAM and EMS. Furthermore, as we had four methods of performing segmentation, we investigated whether the results obtained by each method were more similar to each other than to the manual segmentations using Williams' Index. Reassuringly, the Williams' Index was close to 1 for most subjects (mean = 1.02, sd = 0.05), indicating better agreement of each method with the gold standard than with the other methods. However, 2% of cases (mainly amygdala and nucleus accumbens) had values outside 3 standard deviations of the mean. © 2009 Elsevier Inc. All rights reserved.
Altmetric
Weitere Metriken?
[➜Einloggen]
Tags
Anmerkungen
Besondere Publikation
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Keywords plus
ISSN (print) / ISBN
1053-8119
e-ISSN
1095-9572
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Zeitschrift
NeuroImage - a Journal of Brain Function
Quellenangaben
Band: 47,
Heft: 4,
Seiten: 1435-1447
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Veröffentlichungsnummer
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
Förderungen
Copyright