PuSH - Publikationsserver des Helmholtz Zentrums München

An, U.* ; Cai, N. ; Dahl, A.* ; Sankararaman, S.*

AutoComplete: Deep learning-based phenotype imputation for large-scale biomedical data.

Lect. Notes Comput. Sc. 13278 LNBI, 385-386 (2022)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Biomedical datasets that aim to collect diverse phenotypic and genomic data across large numbers of individuals are plagued by the large fraction of missing data The ability to accurately impute or “fill-in” missing entries in these datasets is critical to a number of downstream applications.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Meeting abstract
Korrespondenzautor
ISSN (print) / ISBN 0302-9743
e-ISSN 1611-3349
Konferenztitel 26th International Conference on Research in Computational Molecular Biology, RECOMB 2022
Konferzenzdatum 22-25 May 2022
Konferenzort San Diego, California, United States
Quellenangaben Band: 13278 LNBI, Heft: , Seiten: 385-386 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Berlin [u.a.]
Nichtpatentliteratur Publikationen
Institut(e) Helmholtz Pioneer Campus (HPC)