Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
AutoComplete: Deep learning-based phenotype imputation for large-scale biomedical data.
Lect. Notes Comput. Sc. 13278 LNBI, 385-386 (2022)
Biomedical datasets that aim to collect diverse phenotypic and genomic data across large numbers of individuals are plagued by the large fraction of missing data The ability to accurately impute or “fill-in” missing entries in these datasets is critical to a number of downstream applications.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Meeting abstract
ISSN (print) / ISBN
0302-9743
e-ISSN
1611-3349
Konferenztitel
26th International Conference on Research in Computational Molecular Biology, RECOMB 2022
Konferzenzdatum
22-25 May 2022
Konferenzort
San Diego, California, United States
Zeitschrift
Lecture Notes in Computer Science
Quellenangaben
Band: 13278 LNBI,
Seiten: 385-386
Verlag
Springer
Verlagsort
Berlin [u.a.]
Nichtpatentliteratur
Publikationen
Institut(e)
Helmholtz Pioneer Campus (HPC)