PuSH - Publikationsserver des Helmholtz Zentrums München

Bi, Y.* ; Jiang, Z.* ; Gao, Y.* ; Wendler, T.* ; Karlas, A. ; Navab, N.*

VesNet-RL: Simulation-based reinforcement learning for real-world US probe navigation.

IEEE Robot. Autom. Lett. 7, 6638-6645 (2022)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.

Ultrasound (US) is one of the most common medical imaging modalities since it is radiation-free, low-cost, and real-time. In freehand US examinations, sonographers often navigate a US probe to visualize standard examination planes with rich diagnostic information. However, reproducibility and stability of the resulting images often suffer from intra- and inter-operator variation. Reinforcement learning (RL), as an interaction-based learning method, has demonstrated its effectiveness in visual navigating tasks; however, RL is limited in terms of generalization. To address this challenge, we propose a simulation-based RL framework for real-world navigation of US probes towards the standard longitudinal views of vessels. A UNet is used to provide binary masks from US images; thereby, the RL agent trained on simulated binary vessel images can be applied in real scenarios without further training. To accurately characterize actual states, a multi-modality state representation structure is introduced to facilitate the understanding of environments. Moreover, considering the characteristics of vessels, a novel standard view recognition approach based on the minimum bounding rectangle is proposed to terminate the searching process. To evaluate the effectiveness of the proposed method, the trained policy is validated virtually on 3D volumes of a volunteer’s in-vivo carotid artery, and physically on custom-designed gel phantoms using robotic US. The results demonstrate that proposed approach can effectively and accurately navigate the probe towards the longitudinal view of vessels.

Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
4.321
2.041
1
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Robotic Ultrasound ; Reinforcement Learning ; Medical Robotics ; Standard Plane Identification
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 2377-3766
e-ISSN 2377-3766
Quellenangaben Band: 7, Heft: 3, Seiten: 6638-6645 Artikelnummer: , Supplement: ,
Verlag IEEE
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-505593-001
Scopus ID 85130770568
Erfassungsdatum 2022-07-08