PuSH - Publikationsserver des Helmholtz Zentrums München

Horn, M.* ; de Brouwer, E.* ; Moor, M.* ; Rieck, B. ; Borgwardt, K.*

Topological graph neural networks

In: (International Conference on Learning Representations, 25–29 April 2022, Virtual). 2022.
Verlagsversion

Graph neural networks (GNNs) are a powerful architecture for tackling graph learning tasks, yet have been shown to be oblivious to eminent substructures such as cycles. We present TOGL, a novel layer that incorporates global topological information of a graph using persistent homology. TOGL can be easily integrated into any type of GNN and is strictly more expressive (in terms the Weisfeiler–Lehman graph isomorphism test) than message-passing GNNs. Augmenting GNNs with TOGL leads to improved predictive performance for graph and node classification tasks, both on synthetic data sets, which can be classified by humans using their topology but not by ordinary GNNs, and on real-world data.

Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Konferenzbeitrag
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
Konferenztitel International Conference on Learning Representations
Konferzenzdatum 25–29 April 2022
Konferenzort Virtual
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-540003-001
Erfassungsdatum 2022-06-29