Hyun, S.* ; Mishra, A.* ; Follett, C.L.* ; Jönsson, B.* ; Kulk, G.* ; Forget, G.* ; Racault, M.F.* ; Jackson, T.* ; Dutkiewicz, S.* ; Müller, C.L. ; Bien, J.*
Ocean mover's distance: Using optimal transport for analysing oceanographic data.
Proc. R. Soc. London A 478:20210875 (2022)
Remote sensing observations from satellites and global biogeochemical models have combined to revolutionize the study of ocean biogeochemical cycling, but comparing the two data streams to each other and across time remains challenging due to the strong spatial-temporal structuring of the ocean. Here, we show that the Wasserstein distance provides a powerful metric for harnessing these structured datasets for better marine ecosystem and climate predictions. The Wasserstein distance complements commonly used point-wise difference methods such as the root-mean-squared error, by quantifying differences in terms of spatial displacement in addition to magnitude. As a test case, we consider chlorophyll (a key indicator of phytoplankton biomass) in the northeast Pacific Ocean, obtained from model simulations, in situ measurements, and satellite observations. We focus on two main applications: (i) comparing model predictions with satellite observations, and (ii) temporal evolution of chlorophyll both seasonally and over longer time frames. The Wasserstein distance successfully isolates temporal and depth variability and quantifies shifts in biogeochemical province boundaries. It also exposes relevant temporal trends in satellite chlorophyll consistent with climate change predictions. Our study shows that optimal transport vectors underlying the Wasserstein distance provide a novel visualization tool for testing models and better understanding temporal dynamics in the ocean.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Wasserstein Distance ; Chlorophyll ; Data-model Comparison ; Earth Mover’s Distance ; Optimal Transport ; Remote Sensing
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2022
Prepublished im Jahr
HGF-Berichtsjahr
2022
ISSN (print) / ISBN
1364-5021
e-ISSN
1471-2946
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 478,
Heft: 2262,
Seiten: ,
Artikelnummer: 20210875
Supplement: ,
Reihe
Verlag
Royal Society of London
Verlagsort
London
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-001
Förderungen
Frontiers of instability in marine ecosystems and carbon export (Marine Frontiers)
National Science Foundation (NSF) NSF - Office of the Director (OD)
United States Department of Health & Human Services National Institutes of Health (NIH) - USA
Simons Collaboration on Computational Biogeochemical Modeling of Marine Ecosystems/CBIOMES
Copyright
Erfassungsdatum
2022-09-26