Assessment of the association of exposure to polycyclic aromatic hydrocarbons, oxidative stress, and inflammation: A cross-sectional study in Augsburg, Germany.
Int. J. Hyg. Environ. Health 244:113993 (2022)
BACKGROUND: Exposure to polycyclic aromatic hydrocarbons (PAHs) has been linked to acute and chronic health effects through the suggested pathways of oxidative stress and inflammation. However, evidence is still limited. We aimed to investigate jointly the relationship of PAHs, oxidative stress, and inflammation. METHODS: We measured 13 biomarkers of PAH exposure (n = 6: hydroxylated polycyclic aromatic hydrocarbons, [OH-PAHs]), oxidative stress (n = 6: malondialdehyde (MDA); 8-hydroxy-2'-deoxyguanosine (8-OHdG); and 4 representatives of the compound class of F2α-isoprostanes) in urine, and inflammation (n = 1: high-sensitivity C-reactive protein, [hs-CRP]) in serum from 400 participants at the second follow-up (2013/2014) of the German KORA survey S4. Multiple linear regression models were applied to investigate the interplay between biomarkers. RESULTS: Concentrations of biomarkers varied according to sex, age, smoking status, season, and a history of obesity, diabetes, or chronic kidney disease. All OH-PAHs were significantly and positively associated with oxidative stress biomarkers. An interquartile range (IQR) increase in sum OH-PAHs was associated with a 13.3% (95% CI: 9.9%, 16.9%) increase in MDA, a 6.5% (95% CI: 3.5%, 9.6%) increase in 8-OHdG, and an 8.4% (95% CI: 6.6%, 11.3%) increase in sum F2α-isoprostanes. Associations were more pronounced between OH-PAHs and F2α-isoprostanes but also between OH-PAHs and 8-OHdG for participants with potential underlying systemic inflammation (hs-CRP ≥ 3 mg/L). We observed no association between OH-PAHs and hs-CRP levels. While 8-OHdG was significantly positively associated with hs-CRP (13.7% [95% CI: 2.2%, 26.5%] per IQR increase in 8-OHdG), F2α-isoprostanes and MDA indicated only a positive or null association, respectively. CONCLUSION: The results of this cross-sectional study suggest, at a population level, that exposure to PAHs is associated with oxidative stress even in a low exposure setting. Oxidative stress markers, but not PAHs, were associated with inflammation. Individual risk factors were important contributors to these processes and should be considered in future studies. Further longitudinal studies are necessary to investigate the causal chain of the associations.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Air Pollution ; Biomarker ; Inflammation ; Oxidative Stress ; Pah
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2022
Prepublished im Jahr
0
HGF-Berichtsjahr
2022
ISSN (print) / ISBN
1438-4639
e-ISSN
1618-131X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 244,
Heft: ,
Seiten: ,
Artikelnummer: 113993
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Amsterdam ; Boston, Mass. ; London ; New York, NY ; Oxford ; Paris ; Philadelphia, Pa. ; San Diego, Calif. ; St. Louis, Mo. ; München
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er)
Genetics and Epidemiology
Environmental Sciences
Enabling and Novel Technologies
PSP-Element(e)
G-504000-001
G-504090-001
G-504500-001
A-630710-001
G-504000-010
Förderungen
Münchner Zentrum für Gesundheitswissenschaften, Ludwig-Maximilians-Universität München
Helmholtz Zentrum Munchen
Universität Rostock
Bundesministerium für Bildung und Forschung
Copyright
Erfassungsdatum
2022-07-18