PuSH - Publikationsserver des Helmholtz Zentrums München

Lang, D.M. ; Peeken, J.C. ; Combs, S.E. ; Wilkens, J.J.* ; Bartzsch, S.

A video data based transfer learning approach for classification of MGMT status in brain tumor MR images.

Lect. Notes Comput. Sc. 12962 LNCS, 306-314 (2022)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Patient MGMT (O 6 methylguanine DNA methyltransferase) status has been identified essential for the responsiveness to chemotherapy in glioblastoma patients and therefore depicts an important clinical factor. Testing for MGMT methylation is invasive, time consuming and costly and lacks a uniform gold standard. We studied MGMT status assessment by multi-parametric magnetic resonance imaging (mpMRI) scans and tested the ability of deep learning for classification of this task. To overcome the limited number of training examples we used a transfer learning approach based on the video clip classification network C3D [30], allowing for full exploitation of three dimensional information in the MR images. MRI sequences were fused using a locally connected layer. Our approach was able to differentiate MGMT methylated from unmethylated patients with an area under the receiver operating characteristics curve (AUC) of 0.689 for the public validation set. On the private test set AUC was given by 0.577. Further studies for assessment of clinical importance and predictive power in terms of survival are needed.
Impact Factor
Scopus SNIP
Altmetric
0.000
0.534
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Deep Learning ; Glioblastoma ; Mgmt Status ; Transfer Learning
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 0302-9743
e-ISSN 1611-3349
Quellenangaben Band: 12962 LNCS, Heft: , Seiten: 306-314 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Berlin [u.a.]
POF Topic(s) 30203 - Molecular Targets and Therapies
Forschungsfeld(er) Radiation Sciences
PSP-Element(e) G-501300-001
Scopus ID 85135087211
Erfassungsdatum 2022-11-04