PuSH - Publikationsserver des Helmholtz Zentrums München

Marien, L.* ; Valizadeh, M. ; zu Castell, W.* ; Nam, C.* ; Rechid, D.* ; Schneider, A.E. ; Meisinger, C. ; Linseisen, J. ; Wolf, K. ; Bouwer, L.M.*

Machine learning models to predict myocardial infarctions from past climatic and environmental conditions.

Hat. Hazards Earth Syst. Sci. 22, 3015-3039 (2022)
Verlagsversion DOI
Open Access Gold
Creative Commons Lizenzvertrag

Myocardial infarctions (MIs) are a major cause of death worldwide, and both high and low temperatures (i.e. heat and cold) may increase the risk of MI. The relationship between health impacts and climate is complex and influenced by a multitude of climatic, environmental, sociodemographic and behavioural factors. Here, we present a machine learning (ML) approach for predicting MI events based on multiple environmental and demographic variables. We derived data on MI events from the KORA MI registry dataset for Augsburg, Germany, between 1998 and 2015.

Multivariable predictors include weather and climate, air pollution (PM10, NO, NO2, SO2 and O3), surrounding vegetation and demographic data. We tested the following ML regression algorithms: decision tree, random forest, multi-layer perceptron, gradient boosting and ridge regression. The models are able to predict the total annual number of MIs reasonably well (adjusted R2 = 0.62–0.71). Inter-annual variations and long-term trends are captured. Across models the most important predictors are air pollution and daily temperatures. Variables not related to environmental conditions, such as demographics need to be considered as well. This ML approach

provides a promising basis to model future MI under changing environmental conditions, as projected by scenarios for climate and other environmental changes.

Impact Factor
Scopus SNIP
Altmetric
4.580
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 1561-8633
e-ISSN 1684-9981
Quellenangaben Band: 22, Heft: 9, Seiten: 3015-3039 Artikelnummer: , Supplement: ,
Verlag Copernicus
Verlagsort Göttingen
Begutachtungsstatus Peer reviewed
POF Topic(s) 30202 - Environmental Health
30205 - Bioengineering and Digital Health
Forschungsfeld(er) Genetics and Epidemiology
Enabling and Novel Technologies
PSP-Element(e) G-504000-001
G-504090-001
G-530001-001
G-502900-001
Förderungen Helmholtz-Gemeinschaft
Scopus ID 85140318225
Erfassungsdatum 2022-09-30