PuSH - Publikationsserver des Helmholtz Zentrums München

Marien, L.* ; Valizadeh, M. ; zu Castell, W.* ; Nam, C.* ; Rechid, D.* ; Schneider, A.E. ; Meisinger, C. ; Linseisen, J. ; Wolf, K. ; Bouwer, L.M.*

Machine learning models to predict myocardial infarctions from past climatic and environmental conditions.

Hat. Hazards Earth Syst. Sci. 22, 3015-3039 (2022)
Verlagsversion DOI
Open Access Gold
Creative Commons Lizenzvertrag

Myocardial infarctions (MIs) are a major cause of death worldwide, and both high and low temperatures (i.e. heat and cold) may increase the risk of MI. The relationship between health impacts and climate is complex and influenced by a multitude of climatic, environmental, sociodemographic and behavioural factors. Here, we present a machine learning (ML) approach for predicting MI events based on multiple environmental and demographic variables. We derived data on MI events from the KORA MI registry dataset for Augsburg, Germany, between 1998 and 2015.

Multivariable predictors include weather and climate, air pollution (PM10, NO, NO2, SO2 and O3), surrounding vegetation and demographic data. We tested the following ML regression algorithms: decision tree, random forest, multi-layer perceptron, gradient boosting and ridge regression. The models are able to predict the total annual number of MIs reasonably well (adjusted R2 = 0.62–0.71). Inter-annual variations and long-term trends are captured. Across models the most important predictors are air pollution and daily temperatures. Variables not related to environmental conditions, such as demographics need to be considered as well. This ML approach

provides a promising basis to model future MI under changing environmental conditions, as projected by scenarios for climate and other environmental changes.

Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
ISSN (print) / ISBN 1561-8633
e-ISSN 1684-9981
Quellenangaben Band: 22, Heft: 9, Seiten: 3015-3039 Artikelnummer: , Supplement: ,
Verlag Copernicus
Verlagsort Göttingen
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed
Förderungen Helmholtz-Gemeinschaft