PuSH - Publikationsserver des Helmholtz Zentrums München

Kahn, J.* ; Tsaklidis, I.* ; Taubert, O.* ; Reuter, L.* ; Dujany, G.* ; Boeckh, T.* ; Thaller, A.* ; Goldenzweig, P.* ; Bernlochner, F.* ; Streit, A.* ; Götz, M.*

Learning tree structures from leaves for particle decay reconstruction.

Mach. Learn.: Sci. Technol. 3:035012 (2022)
Verlagsversion DOI
Open Access Gold
Creative Commons Lizenzvertrag
In this work, we present a neural approach to reconstructing rooted tree graphs describing hierarchical interactions, using a novel representation we term the lowest common ancestor generations (LCAG) matrix. This compact formulation is equivalent to the adjacency matrix, but enables learning a tree’s structure from its leaves alone without the prior assumptions required if using the adjacency matrix directly. Employing the LCAG therefore enables the first end-to-end trainable solution which learns the hierarchical structure of varying tree sizes directly, using only the terminal tree leaves to do so. In the case of high-energy particle physics, a particle decay forms a hierarchical tree structure of which only the final products can be observed experimentally, and the large combinatorial space of possible trees makes an analytic solution intractable. We demonstrate the use of the LCAG as a target in the task of predicting simulated particle physics decay structures using both a Transformer encoder and a neural relational inference encoder graph neural network. With this approach, we are able to correctly predict the LCAG purely from leaf features for a maximum tree-depth of 8 in 92.5 % of cases for trees up to 6 leaves (including) and 59.7 % for trees up to 10 in our simulated dataset.
Impact Factor
Scopus SNIP
Altmetric
6.013
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Particle Physics ; Tree Reconstruction ; Lowest Common Ancestor Generation ; Graph Neural Networks ; Self-attention Neural Networks ; Transformer
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 2632-2153
e-ISSN 2632-2153
Quellenangaben Band: 3, Heft: 3, Seiten: , Artikelnummer: 035012 Supplement: ,
Verlag Institute of Physics Publishing (IOP)
Begutachtungsstatus Peer reviewed
Institut(e) Helmholtz AI - KIT (HAI - KIT)
Helmholtz AI - HMGU (HAI - HMGU)
Scopus ID 85139241403
Erfassungsdatum 2022-11-08