Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Lentiviral vector design and imaging approaches to visualize the early stages of cellular reprogramming.
Mol. Ther. 19, 782-789 (2011)
Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by gene transfer of reprogramming transcription factors. Expression levels of these factors strongly influence the overall efficacy to form iPSC colonies, but additional contribution of stochastic cell-intrinsic factors has been proposed. Here, we present engineered color-coded lentiviral vectors in which codon-optimized reprogramming factors are co-expressed by a strong retroviral promoter that is rapidly silenced in iPSC, and imaged the conversion of fibroblasts to iPSC. We combined fluorescence microscopy with long-term single cell tracking, and used live-cell imaging to analyze the emergence and composition of early iPSC clusters. Applying our engineered lentiviral vectors, we demonstrate that vector silencing typically occurs prior to or simultaneously with the induction of an Oct4-EGFP pluripotency marker. Around 7 days post-transduction (pt), a subfraction of cells in clonal colonies expressed Oct4-EGFP and rapidly expanded. Cell tracking of single cell-derived iPSC colonies supported the concept that stochastic epigenetic changes are necessary for reprogramming. We also found that iPSC colonies may emerge as a genetic mosaic originating from different clusters. Improved vector design with continuous cell tracking thus creates a powerful system to explore the subtle dynamics of biological processes such as early reprogramming events.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
pluripotent stem-cells; human somatic-cells; human ips cells; hematopoietic-cells; retroviral vectors; gene-expression; defined factors; generation; differentiation; induction
ISSN (print) / ISBN
1525-0016
e-ISSN
1525-0024
Zeitschrift
Molecular Therapy
Quellenangaben
Band: 19,
Heft: 4,
Seiten: 782-789
Verlag
Nature Publishing Group
Verlagsort
San Diego, CA, USA
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Institut(e)
Research Unit Stem Cell Dynamics (SCD)