Zimmer, V.A.* ; Gomez, A.* ; Skelton, E.* ; Wright, R.* ; Wheeler, G.* ; Deng, S.* ; Ghavami, N.* ; Lloyd, K.* ; Matthew, J.* ; Kainz, B.* ; Rueckert, D.* ; Hajnal, J.V.* ; Schnabel, J.A.
Placenta segmentation in ultrasound imaging: Addressing sources of uncertainty and limited field-of-view.
Med. Image Anal. 83:102639 (2022)
Automatic segmentation of the placenta in fetal ultrasound (US) is challenging due to the (i) high diversity of placenta appearance, (ii) the restricted quality in US resulting in highly variable reference annotations, and (iii) the limited field-of-view of US prohibiting whole placenta assessment at late gestation. In this work, we address these three challenges with a multi-task learning approach that combines the classification of placental location (e.g., anterior, posterior) and semantic placenta segmentation in a single convolutional neural network. Through the classification task the model can learn from larger and more diverse datasets while improving the accuracy of the segmentation task in particular in limited training set conditions. With this approach we investigate the variability in annotations from multiple raters and show that our automatic segmentations (Dice of 0.86 for anterior and 0.83 for posterior placentas) achieve human-level performance as compared to intra- and inter-observer variability. Lastly, our approach can deliver whole placenta segmentation using a multi-view US acquisition pipeline consisting of three stages: multi-probe image acquisition, image fusion and image segmentation. This results in high quality segmentation of larger structures such as the placenta in US with reduced image artifacts which are beyond the field-of-view of single probes.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Multi-task Learning ; Multi-view Imaging ; Ultrasound Placenta Segmentation ; Uncertainty/variability; Practice Guidelines; Performance; Volume; Mri
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2022
Prepublished im Jahr
0
HGF-Berichtsjahr
2022
ISSN (print) / ISBN
1361-8415
e-ISSN
1361-8415
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 83,
Heft: ,
Seiten: ,
Artikelnummer: 102639
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Radarweg 29, 1043 Nx Amsterdam, Netherlands
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-507100-001
Förderungen
Centre For Medical Engineering, King’s College London
Guy's and St Thomas' NHS Foundation Trust
King's College London
National Institute for Health and Care Research
NIHR Biomedical Research Centre, Royal Marsden NHS Foundation Trust/Institute of Cancer Research
Wellcome Trust
King’s College London
Copyright
Erfassungsdatum
2022-10-25