PuSH - Publikationsserver des Helmholtz Zentrums München

SHAPR predicts 3D cell shapes from 2D microscopic images.

iScience 25:105298 (2022)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Reconstruction of shapes and sizes of three-dimensional (3D) objects from two- dimensional (2D) information is an intensely studied subject in computer vision. We here consider the level of single cells and nuclei and present a neural network-based SHApe PRediction autoencoder. For proof-of-concept, SHAPR reconstructs 3D shapes of red blood cells from single view 2D confocal microscopy images more accurately than naïve stereological models and significantly increases the feature-based prediction of red blood cell types from F1 = 79% to F1 = 87.4%. Applied to 2D images containing spheroidal aggregates of densely grown human induced pluripotent stem cells, we find that SHAPR learns fundamental shape properties of cell nuclei and allows for prediction-based morphometry. Reducing imaging time and data storage, SHAPR will help to optimize and up-scale image-based high-throughput applications for biomedicine.
Impact Factor
Scopus SNIP
Altmetric
6.107
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Cell Biology ; Neural Networks ; Predictive Medicine
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 2589-0042
e-ISSN 2589-0042
Zeitschrift iScience
Quellenangaben Band: 25, Heft: 11, Seiten: , Artikelnummer: 105298 Supplement: ,
Verlag Elsevier
Verlagsort Amsterdam ; Bosten ; London ; New York ; Oxford ; Paris ; Philadelphia ; San Diego ; St. Louis
Begutachtungsstatus Peer reviewed
Institut(e) Institute of AI for Health (AIH)
Helmholtz Pioneer Campus (HPC)
Institute of Computational Biology (ICB)
POF Topic(s) 30205 - Bioengineering and Digital Health
30201 - Metabolic Health
Forschungsfeld(er) Enabling and Novel Technologies
Pioneer Campus
PSP-Element(e) G-540007-001
G-510002-001
G-503800-001
Förderungen Horizon 2020
European Research Council
Horizon 2020 Framework Programme
Mohammad Mirkazemi
Scopus ID 85140045924
PubMed ID 36304119
Erfassungsdatum 2022-10-28