How many Fourier coefficients are needed?
Monatsh. Math. 200, 23–42 (2023)
We are looking at families of functions or measures on the torus which are specified by a finite number of parameters N. The task, for a given family, is to look at a small number of Fourier coefficients of the object, at a set of locations that is predetermined and may depend only on N, and determine the object. We look at (a) the indicator functions of at most N intervals of the torus and (b) at sums of at most N complex point masses on the multidimensional torus. In the first case we reprove a theorem of Courtney which says that the Fourier coefficients at the locations 0 , 1 , … , N are sufficient to determine the function (the intervals). In the second case we produce a set of locations of size O(Nlog d-1N) which suffices to determine the measure.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Fourier Coefficients ; Interpolation ; Inverse Problem ; Non-harmonic Exponential Sums ; Sparse Exponential Sums
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
2022
HGF-Berichtsjahr
2022
ISSN (print) / ISBN
0026-9255
e-ISSN
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 200,
Heft: ,
Seiten: 23–42
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Universität Wien
Verlagsort
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-505500-001
Förderungen
Hellenic Foundation for Research and Innovation
University of Crete
Copyright
Erfassungsdatum
2022-11-29