möglich sobald bei der ZB eingereicht worden ist.
Generation of realistic simulated B-mode image texture with a GAN.
In: (2022 IEEE International Ultrasonics Symposium (IUS), 10-13 October 2022, Venice, Italy). 345 E 47th St, New York, Ny 10017 Usa: Ieee, 2022. 4 (IEEE International Ultrasonics Symposium, IUS)
The intima-media complex of the common carotid artery is considered the sentinel of a silent killer disease called atherosclerosis. Morphological biomarkers such as the intima-media thickness are already exploitable, but dynamic biomarkers, which reflect tissue deformation over the cardiac cycle, remain to be validated. Recent motion estimation methods seek to quantify compression, shear, and elongation coefficients, but their clinical applicability has not yet been well defined, and their actual accuracy is difficult to assess due to the absence of ground truth. This lack of reference also is the main limitation to explore fully supervised deep learning methods that have shown great potential in other applications. With this in mind, we propose a simulation pipeline to produce realistic in silico sequences, by combining a physics-based simulator with a post-processing based on a generative adversarial network.
Altmetric
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Carotid Artery ; Deep Learning ; Domain Adaptation ; Generative Adversarial Network ; Ultrasound Simulation
Sprache
englisch
Veröffentlichungsjahr
2022
HGF-Berichtsjahr
2022
ISSN (print) / ISBN
1948-5719
e-ISSN
1948-5727
Konferenztitel
2022 IEEE International Ultrasonics Symposium (IUS)
Konferzenzdatum
10-13 October 2022
Konferenzort
Venice, Italy
Quellenangaben
Seiten: 4
Verlag
Ieee
Verlagsort
345 E 47th St, New York, Ny 10017 Usa
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-505500-001
Förderungen
LABEX PRIMES of Universite de Lyon, within the program "Investissements d'Avenir"
NL's doctoral grant
NL's doctoral grant
WOS ID
000896080400478
Scopus ID
85143832445
Erfassungsdatum
2022-12-21