PuSH - Publikationsserver des Helmholtz Zentrums München

Yu, Z.* ; Han, X.* ; Zhang, S.* ; Feng, J.* ; Peng, T. ; Zhang, X.Y.*

MouseGAN++: Unsupervised disentanglement and contrastive representation for multiple MRI modalities synthesis and structural segmentation of mouse brain.

IEEE Trans. Med. Imaging 42, 1197-1209 (2022)
Postprint DOI
Open Access Green
Segmenting the fine structure of the mouse brain on magnetic resonance (MR) images is critical for delineating morphological regions, analyzing brain function, and understanding their relationships. Compared to a single MRI modality, multimodal MRI data provide complementary tissue features that can be exploited by deep learning models, resulting in better segmentation results. However, multimodal mouse brain MRI data is often lacking, making automatic segmentation of mouse brain fine structure a very challenging task. To address this issue, it is necessary to fuse multimodal MRI data to produce distinguished contrasts in different brain structures. Hence, we propose a novel disentangled and contrastive GAN-based framework, named MouseGAN++, to synthesize multiple MR modalities from single ones in a structure-preserving manner, thus improving the segmentation performance by imputing missing modalities and multi-modality fusion. Our results demonstrate that the translation performance of our method outperforms the state-of-the-art methods. Using the subsequently learned modality-invariant information as well as the modality-translated images, MouseGAN++ can segment fine brain structures with averaged dice coefficients of 90.0% (T2w) and 87.9% (T1w), respectively, achieving around +10% performance improvement compared to the state-of-the-art algorithms. Our results demonstrate that MouseGAN++, as a simultaneous image synthesis and segmentation method, can be used to fuse cross-modality information in an unpaired manner and yield more robust performance in the absence of multimodal data. We release our method as a mouse brain structural segmentation tool for free academic usage at https://github.com/yu02019.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Altmetric
11.037
3.909
1
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Disentangled Representations ; Generative Adversarial Network ; Mouse Brain ; Mri ; Segmentation; Image
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 0278-0062
e-ISSN 1558-254X
Quellenangaben Band: 42, Heft: 4, Seiten: 1197-1209 Artikelnummer: , Supplement: ,
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Verlagsort New York, NY [u.a.]
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-530006-001
Förderungen Natural Science Foundation of Shanghai
ZJLab
Shanghai Municipal Science and Technology Major Project
National Natural Science Foundation of China
Scopus ID 85144045300
Erfassungsdatum 2023-01-10