PuSH - Publikationsserver des Helmholtz Zentrums München

Objective hearing threshold identification from auditory brainstem response measurements using supervised and self-supervised approaches.

BMC Neurosci. 23:81 (2022)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Hearing loss is a major health problem and psychological burden in humans. Mouse models offer a possibility to elucidate genes involved in the underlying developmental and pathophysiological mechanisms of hearing impairment. To this end, large-scale mouse phenotyping programs include auditory phenotyping of single-gene knockout mouse lines. Using the auditory brainstem response (ABR) procedure, the German Mouse Clinic and similar facilities worldwide have produced large, uniform data sets of averaged ABR raw data of mutant and wildtype mice. In the course of standard ABR analysis, hearing thresholds are assessed visually by trained staff from series of signal curves of increasing sound pressure level. This is time-consuming and prone to be biased by the reader as well as the graphical display quality and scale.In an attempt to reduce workload and improve quality and reproducibility, we developed and compared two methods for automated hearing threshold identification from averaged ABR raw data: a supervised approach involving two combined neural networks trained on human-generated labels and a self-supervised approach, which exploits the signal power spectrum and combines random forest sound level estimation with a piece-wise curve fitting algorithm for threshold finding.We show that both models work well and are suitable for fast, reliable, and unbiased hearing threshold detection and quality control. In a high-throughput mouse phenotyping environment, both methods perform well as part of an automated end-to-end screening pipeline to detect candidate genes for hearing involvement. Code for both models as well as data used for this work are freely available.
Impact Factor
Scopus SNIP
Altmetric
3.264
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Auditory Brainstem Response ; Automation ; Evoked Potentials ; High-throughput Hearing Screening ; Objective Hearing Threshold Detection; Evoked-potentials; Visual Detection; Classification; Time; Discovery
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
e-ISSN 1471-2202
Zeitschrift BMC Neuroscience
Quellenangaben Band: 23, Heft: 1, Seiten: , Artikelnummer: 81 Supplement: ,
Verlag BioMed Central
Verlagsort Campus, 4 Crinan St, London N1 9xw, England
Begutachtungsstatus Peer reviewed
POF Topic(s) 30201 - Metabolic Health
30205 - Bioengineering and Digital Health
Forschungsfeld(er) Genetics and Epidemiology
Enabling and Novel Technologies
PSP-Element(e) G-500600-001
G-503800-001
G-500692-001
G-530001-001
Förderungen Projekt DEAL
Scopus ID 85144775092
PubMed ID 36575380
Erfassungsdatum 2023-01-12