Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Super-resolution segmentation of imaging mass spectrometry data: Solving the issue of low lateral resolution.
J. Proteomics 75, 237-245 (2011)
In the last decade, imaging mass spectrometry has seen incredible technological advances in its applications to biological samples. One computational method of data mining in this field is the spatial segmentation of a sample, which produces a segmentation map highlighting chemically similar regions. An important issue for any imaging mass spectrometry technology is its relatively low spatial or lateral resolution (i.e. a large size of pixel) as compared with microscopy. Thus, the spatial resolution of a segmentation map is also relatively low, that complicates its visual examination and interpretation when compared with microscopy data, as well as reduces the accuracy of any automated comparison. We address this issue by proposing an approach to improve the spatial resolution of a segmentation map. Given a segmentation map, our method magnifies it up to some factor, producing a super-resolution segmentation map. The super-resolution map can be overlaid and compared with a high-res microscopy image. The proposed method is based on recent advances in image processing and smoothes the "pixilated" region boundaries while preserving fine details. Moreover, it neither eliminates nor splits any region. We evaluated the proposed super-resolution segmentation approach on three MALDI-imaging datasets of human tissue sections and demonstrated the superiority of the super-segmentation maps over standard segmentation maps.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
5.074
1.040
15
23
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Imaging mass spectrometry; Segmentation map; Spatial resolution; Computational super-resolution
Sprache
englisch
Veröffentlichungsjahr
2011
HGF-Berichtsjahr
2011
ISSN (print) / ISBN
1874-3919
e-ISSN
1876-7737
Zeitschrift
Journal of Proteomics
Quellenangaben
Band: 75,
Heft: 1,
Seiten: 237-245
Verlag
Elsevier
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Pathology (PATH)
Translational Metabolic Oncology (IDC-TMO)
Research Unit Analytical Pathology (AAP)
Translational Metabolic Oncology (IDC-TMO)
Research Unit Analytical Pathology (AAP)
POF Topic(s)
30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
30203 - Molecular Targets and Therapies
30205 - Bioengineering and Digital Health
30203 - Molecular Targets and Therapies
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
Radiation Sciences
Radiation Sciences
PSP-Element(e)
G-500300-001
G-501000-001
G-500390-001
G-501000-001
G-500390-001
PubMed ID
21854879
Scopus ID
84858739822
Erfassungsdatum
2011-11-29