PuSH - Publikationsserver des Helmholtz Zentrums München

Alexandrov, T.* ; Meding, S. ; Trede, D.* ; Kobarg, J.H.* ; Balluff, B. ; Walch, A.K. ; Thiele, H.* ; Maass, P.*

Super-resolution segmentation of imaging mass spectrometry data: Solving the issue of low lateral resolution.

J. Proteomics 75, 237-245 (2011)
DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
In the last decade, imaging mass spectrometry has seen incredible technological advances in its applications to biological samples. One computational method of data mining in this field is the spatial segmentation of a sample, which produces a segmentation map highlighting chemically similar regions. An important issue for any imaging mass spectrometry technology is its relatively low spatial or lateral resolution (i.e. a large size of pixel) as compared with microscopy. Thus, the spatial resolution of a segmentation map is also relatively low, that complicates its visual examination and interpretation when compared with microscopy data, as well as reduces the accuracy of any automated comparison. We address this issue by proposing an approach to improve the spatial resolution of a segmentation map. Given a segmentation map, our method magnifies it up to some factor, producing a super-resolution segmentation map. The super-resolution map can be overlaid and compared with a high-res microscopy image. The proposed method is based on recent advances in image processing and smoothes the "pixilated" region boundaries while preserving fine details. Moreover, it neither eliminates nor splits any region. We evaluated the proposed super-resolution segmentation approach on three MALDI-imaging datasets of human tissue sections and demonstrated the superiority of the super-segmentation maps over standard segmentation maps.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
5.074
1.040
15
23
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Imaging mass spectrometry; Segmentation map; Spatial resolution; Computational super-resolution
Sprache englisch
Veröffentlichungsjahr 2011
HGF-Berichtsjahr 2011
ISSN (print) / ISBN 1874-3919
e-ISSN 1876-7737
Zeitschrift Journal of Proteomics
Quellenangaben Band: 75, Heft: 1, Seiten: 237-245 Artikelnummer: , Supplement: ,
Verlag Elsevier
Begutachtungsstatus Peer reviewed
POF Topic(s) 30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
30203 - Molecular Targets and Therapies
30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
Radiation Sciences
PSP-Element(e) G-500300-001
G-501000-001
G-500390-001
PubMed ID 21854879
Scopus ID 84858739822
Erfassungsdatum 2011-11-29