PuSH - Publikationsserver des Helmholtz Zentrums München

Danger, G.* ; Ruf, A.* ; Javelle, T.* ; Maillard, J.* ; Vinogradoff, V.* ; Afonso, C.* ; Schmitz-Afonso, I.* ; Remusat, L.* ; Gabelica, Z.* ; Schmitt-Kopplin, P.

The transition from soluble to insoluble organic matter in interstellar ice analogs and meteorites.

Astron. Astrophys. 667:A120 (2022)
Verlagsversion DOI
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
Context. Carbonaceous chondrites are sources of information on the origin of the Solar System. Their organic content is conventionally classified as soluble (SOM) and insoluble organic matter (IOM), where the latter represents the majority. Aims. In this work, our objectives are to identify possible relations between soluble and insoluble organic matter generated in laboratory experiments and to extrapolate the laboratory analog findings to soluble and insoluble organic matter of meteorites to test their connection. Methods. Using laboratory experiments, processes possibly linking IOM analog (IOMA) to SOM analog (SOMA) precursors are investigated by assuming that dense molecular ices are one of the sources of organic matter in the Solar System. Each organic fraction is analyzed by laser desorption coupled to a Fourier transform ion cyclotron resonance mass spectrometer on a comprehensive basis. Results. SOMA and IOMA significantly differ in their chemical fingerprints, and particularly in their aromaticity, O/C, and N/C elemental ratios. Using an innovative molecular network, the SOMAaIOMA transition was tested, revealing connection between both classes. This new network suggests that IOMA is formed in two steps: a first generation IOMA based on precursors from SOMA, while a second IOMA generation is formed by altering the first IOMA generation. Finally, using the same analytical technique, the molecular content of IOMA and that of the Paris IOM are compared, showing their molecular similarities for the first time. The molecular network application to the Paris SOM and IOM demonstrates that a possible connection related to photochemical ice processing is present, but that the overall history of IOM formation in meteorites is much more complex and might have been affected by additional factors (e.g., aqueous alteration). Conclusions. Our approach provides a new way to analyze the organic fraction of extraterrestrial material, giving new insights into the evolution of organic matter in the Solar System.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter Astrobiology ; Astrochemistry ; Meteorites ; Meteoroids ; Meteors ; Methods: Analytical ; Methods: Laboratory: Molecular ; Molecular Processes; Resonance Mass-spectrometry; Carbonaceous Chondrites; Hydrothermal Alteration; Murchison Meteorites; Molecular Diversity; Aqueous Alteration; C-13 Nmr; Orgueil; Evolution; Asteroids
ISSN (print) / ISBN 0004-6361
e-ISSN 1432-0746
Quellenangaben Band: 667, Heft: , Seiten: , Artikelnummer: A120 Supplement: ,
Verlag EDP Sciences
Verlagsort 17, Ave Du Hoggar, Pa Courtaboeuf, Bp 112, F-91944 Les Ulis Cedex A, France
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed
Förderungen European Research Council (ERC)
Centre National de la Recherche Scientifique (CNRS) FT-ICR-MS
Region Normandie
European Union
Labex SynOrg
European Regional Development Fund (ERDF NDEG)
ERC
European Research Council
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
French "Investissements d'Avenir programme"
EXCellence Initiative of Aix-Marseille Universite - A*Midex
Centre National d'Etudes Spatiales
Agence nationale de la recherche
Centre National de la Recherche Francaise (CNRS)
Centre National d'Etudes Spatiales (CNES)