PuSH - Publikationsserver des Helmholtz Zentrums München

DeepSom: A CNN-based approach to somatic variant calling in WGS samples without a matched normal.

Bioinformatics 39:9 (2023)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
MOTIVATION: Somatic mutations are usually called by analysing the DNA sequence of a tumor sample in conjunction with a matched normal. However, a matched normal is not always available, for instance, in retrospective analysis or diagnostic settings. For such cases, tumor-only somatic variant calling tools need to be designed. Previously proposed approaches demonstrate inferior performance on whole genome sequencing (WGS) samples. RESULTS: We present the convolutional neural network-based approach called DeepSom for detecting somatic single nucleotide polymorphism (SNP) and short insertion and deletion (INDEL) variants in tumor WGS samples without a matched normal. We validate DeepSom by reporting its performance on 5 different cancer datasets. We also demonstrate that on WGS samples DeepSom outperforms previously proposed methods for tumor-only somatic variant calling. AVAILABILITY: DeepSom is available as a GitHub repository at https://github.com/heiniglab/DeepSom. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Impact Factor
Scopus SNIP
Altmetric
5.800
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Passenger Mutations; Signatures; Landscape; Framework; Cancer; Driver; Genome
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
e-ISSN 1367-4811
Zeitschrift Bioinformatics
Quellenangaben Band: 39, Heft: 1, Seiten: , Artikelnummer: 9 Supplement: ,
Verlag Oxford University Press
Verlagsort Oxford
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-553500-001
Förderungen German Ministry for Education and Research (BMBF)
Scopus ID 85146365332
PubMed ID 36637201
Erfassungsdatum 2023-01-17