Horlacher, M. ; Oleshko, S. ; Hu, Y. ; Ghanbari, M.* ; Cantini, G. ; Schinke, P. ; Vergara, E.E. ; Bittner, F.* ; Mueller, N.S.* ; Ohler, U.* ; Moyon, L. ; Marsico, A.
A computational map of the human-SARS-CoV-2 protein-RNA interactome predicted at single-nucleotide resolution.
NAR Gen. Bioinfo. 5:lqad010 (2023)
RNA-binding proteins (RBPs) are critical host factors for viral infection, however, large scale experimental investigation of the binding landscape of human RBPs to viral RNAs is costly and further complicated due to sequence variation between viral strains. To fill this gap, we investigated the role of RBPs in the context of SARS-CoV-2 by constructing the first in silico map of human RBP-viral RNA interactions at nucleotide-resolution using two deep learning methods (pysster and DeepRiPe) trained on data from CLIP-seq experiments on more than 100 human RBPs. We evaluated conservation of RBP binding between six other human pathogenic coronaviruses and identified sites of conserved and differential binding in the UTRs of SARS-CoV-1, SARS-CoV-2 and MERS. We scored the impact of mutations from 11 variants of concern on protein-RNA interaction, identifying a set of gain- and loss-of-binding events, as well as predicted the regulatory impact of putative future mutations. Lastly, we linked RBPs to functional, OMICs and COVID-19 patient data from other studies, and identified MBNL1, FTO and FXR2 RBPs as potential clinical biomarkers. Our results contribute towards a deeper understanding of how viruses hijack host cellular pathways and open new avenues for therapeutic intervention.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Neural-networks; In-vivo; Binding; Sars-cov-2; Reveals; Coronavirus; Identification; Specificity; Sequence; Variant
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
2631-9268
e-ISSN
2631-9268
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 5,
Heft: 1,
Seiten: ,
Artikelnummer: lqad010
Supplement: ,
Reihe
Verlag
Oxford University Press
Verlagsort
Great Clarendon St, Oxford Ox2 6dp, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-001
G-503800-004
Förderungen
Berlin Center of Machine Learning - German Ministry for Education and Research
Joachim Herz Foundation
Deutsche Forschungsgemeinschaft
Helmholtz Association under the joint research school 'Munich School for Data Science
Copyright
Erfassungsdatum
2023-03-01