Hurdle-QAP models overcome dependency and sparsity in scientific collaboration count networks.
J. Math. Socio. 48, 100-127 (2024)
Spatial proximity may facilitate scientific collaboration. We regress its impact within two German research institutions, defining collaboration strength and proximity by the number of joint publications and spatial distance between work places. The methodological focus lies on accounting for (i) the dependency structure in network data and (ii) excess zeros in the sparse target matrix. The former can be addressed by a quadratic assignment procedure (QAP), the second by a hurdle model. To offer a joint solution, we combine the methods to novel parametric and non-parametric hurdle-QAP models. The analysis reveals that proximity can facilitate collaboration, but significant effects get lost within building structures. Outcomes of this study may inform about how to target the promotion of interdisciplinary research.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Collaboration Network ; Count Data ; Hurdle Model ; Network Regression ; Qap ; Sparse Networks ; Spatial Proximity
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
2023
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
0022-250X
e-ISSN
1545-5874
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 48,
Heft: 1,
Seiten: 100-127
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Taylor & Francis
Verlagsort
530 Walnut Street, Ste 850, Philadelphia, Pa 19106 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-001
Förderungen
Deutsche Forschungsgemeinschaft (DFG)
Bielefeld University
Copyright
Erfassungsdatum
2023-11-29