PuSH - Publikationsserver des Helmholtz Zentrums München

Hurdle-QAP models overcome dependency and sparsity in scientific collaboration count networks.

J. Math. Socio. 48, 100-127 (2024)
Verlagsversion DOI
Open Access Hybrid
Creative Commons Lizenzvertrag
Spatial proximity may facilitate scientific collaboration. We regress its impact within two German research institutions, defining collaboration strength and proximity by the number of joint publications and spatial distance between work places. The methodological focus lies on accounting for (i) the dependency structure in network data and (ii) excess zeros in the sparse target matrix. The former can be addressed by a quadratic assignment procedure (QAP), the second by a hurdle model. To offer a joint solution, we combine the methods to novel parametric and non-parametric hurdle-QAP models. The analysis reveals that proximity can facilitate collaboration, but significant effects get lost within building structures. Outcomes of this study may inform about how to target the promotion of interdisciplinary research.
Impact Factor
Scopus SNIP
Altmetric
1.300
1.109
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Collaboration Network ; Count Data ; Hurdle Model ; Network Regression ; Qap ; Sparse Networks ; Spatial Proximity
Sprache englisch
Veröffentlichungsjahr 2024
Prepublished im Jahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 0022-250X
e-ISSN 1545-5874
Quellenangaben Band: 48, Heft: 1, Seiten: 100-127 Artikelnummer: , Supplement: ,
Verlag Taylor & Francis
Verlagsort 530 Walnut Street, Ste 850, Philadelphia, Pa 19106 Usa
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Förderungen Deutsche Forschungsgemeinschaft (DFG)
Bielefeld University
Scopus ID 85149484532
Erfassungsdatum 2023-11-29