Romano, A.* ; Rizner, T.L.* ; Werner, H.M.J.* ; Semczuk, A.* ; Lowy, C.* ; Schröder, C.* ; Griesbeck, A.* ; Adamski, J. ; Fishman, D.* ; Tokarz, J.
     
 
    
        
Endometrial cancer diagnostic and prognostic algorithms based on proteomics, metabolomics, and clinical data: A systematic review.
    
    
        
    
    
        
        Front. Oncol. 13:1120178 (2023)
    
    
    
		
		
			
				Endometrial cancer is the most common gynaecological malignancy in developed countries. Over 382,000 new cases were diagnosed worldwide in 2018, and its incidence and mortality are constantly rising due to longer life expectancy and life style factors including obesity. Two major improvements are needed in the management of patients with endometrial cancer, i.e., the development of non/minimally invasive tools for diagnostics and prognostics, which are currently missing. Diagnostic tools are needed to manage the increasing number of women at risk of developing the disease. Prognostic tools are necessary to stratify patients according to their risk of recurrence pre-preoperatively, to advise and plan the most appropriate treatment and avoid over/under-treatment. Biomarkers derived from proteomics and metabolomics, especially when derived from non/minimally-invasively collected body fluids, can serve to develop such prognostic and diagnostic tools, and the purpose of the present review is to explore the current research in this topic. We first provide a brief description of the technologies, the computational pipelines for data analyses and then we provide a systematic review of all published studies using proteomics and/or metabolomics for diagnostic and prognostic biomarker discovery in endometrial cancer. Finally, conclusions and recommendations for future studies are also given.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Review
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Biomarker ; Endometrial Cancer ; Machine Learning ; Metabolomics ; Proteomics; Multidimensional Liquid-chromatography; Mass-spectrometry; Doxorubicin Resistance; Biomarker Discovery; Risk Classification; Protein Expression; Quality Assessment; Carcinoma; Identification; Verification
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2023
    
 
    
        Prepublished im Jahr 
        0
    
 
    
        HGF-Berichtsjahr
        2023
    
 
    
    
        ISSN (print) / ISBN
        2234-943X
    
 
    
        e-ISSN
        2234-943X
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 13,  
	    Heft: ,  
	    Seiten: ,  
	    Artikelnummer: 1120178 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Frontiers
        
 
        
            Verlagsort
            Avenue Du Tribunal Federal 34, Lausanne, Ch-1015, Switzerland
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30201 - Metabolic Health
    
 
    
        Forschungsfeld(er)
        Helmholtz Diabetes Center
Genetics and Epidemiology
    
 
    
        PSP-Element(e)
        G-502594-001
G-500600-001
    
 
    
        Förderungen
        National Centre for Research and Development Poland NCBiR grant ERA-NET
Estonian Research Council
German Federal Ministry for Education and Research (BMBF)
Dutch Cancer Society
MIZS, Ministry of Education, Science and Sports Slovenia
EU
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2023-10-06