Haueise, T. ; Schick, F. ; Stefan, N. ; Schlett, C.L.* ; Weiss, J.B.* ; Nattenmüller, J.* ; Göbel-Guéniot, K.* ; Norajitra, T.* ; Nonnenmacher, T.* ; Kauczor, H.U.* ; Maier-Hein, K.H.* ; Niendorf, T.* ; Pischon, T.* ; Jöckel, K.H.* ; Umutlu, L.* ; Peters, A. ; Rospleszcz, S. ; Kröncke, T.* ; Hosten, N.* ; Völzke, H.* ; Krist, L.* ; Willich, S.N.* ; Bamberg, F.* ; Machann, J.
Analysis of volume and topography of adipose tissue in the trunk: Results of MRI of 11,141 participants in the German National Cohort.
Sci. Adv. 9:eadd0433 (2023)
This research addresses the assessment of adipose tissue (AT) and spatial distribution of visceral (VAT) and subcutaneous fat (SAT) in the trunk from standardized magnetic resonance imaging at 3 T, thereby demonstrating the feasibility of deep learning (DL)-based image segmentation in a large population-based cohort in Germany (five sites). Volume and distribution of AT play an essential role in the pathogenesis of insulin resistance, a risk factor of developing metabolic/cardiovascular diseases. Cross-validated training of the DL-segmentation model led to a mean Dice similarity coefficient of >0.94, corresponding to a mean absolute volume deviation of about 22 ml. SAT is significantly increased in women compared to men, whereas VAT is increased in males. Spatial distribution shows age- and body mass index-related displacements. DL-based image segmentation provides robust and fast quantification of AT (≈15 s per dataset versus 3 to 4 hours for manual processing) and assessment of its spatial distribution from magnetic resonance images in large cohort studies.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Multi-atlas Segmentation; Body-fat Distribution; Obesity; Population; Design; Burden; Images; Risk; Men
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
2375-2548
e-ISSN
2375-2548
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 9,
Heft: 19,
Seiten: ,
Artikelnummer: eadd0433
Supplement: ,
Reihe
Verlag
American Association for the Advancement of Science (AAAS)
Verlagsort
Washington, DC [u.a.]
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
90000 - German Center for Diabetes Research
30202 - Environmental Health
Forschungsfeld(er)
Helmholtz Diabetes Center
Genetics and Epidemiology
PSP-Element(e)
G-502400-001
G-504000-010
Förderungen
Leibniz Association
Helmholtz Association
federal states
Federal Ministry of Education and Research (BMBF)
German Federal Ministry of Education and Research (BMBF)
German Research Foundation
Copyright
Erfassungsdatum
2023-10-06