Label-free imaging of 3D pluripotent stem cell differentiation dynamics on chip.
Cell Rep. Methods 3:100523 (2023)
Massive, parallelized 3D stem cell cultures for engineering in vitro human cell types require imaging methods with high time and spatial resolution to fully exploit technological advances in cell culture technologies. Here, we introduce a large-scale integrated microfluidic chip platform for automated 3D stem cell differentiation. To fully enable dynamic high-content imaging on the chip platform, we developed a label-free deep learning method called Bright2Nuc to predict in silico nuclear staining in 3D from confocal microscopy bright-field images. Bright2Nuc was trained and applied to hundreds of 3D human induced pluripotent stem cell cultures differentiating toward definitive endoderm on a microfluidic platform. Combined with existing image analysis tools, Bright2Nuc segmented individual nuclei from bright-field images, quantified their morphological properties, predicted stem cell differentiation state, and tracked the cells over time. Our methods are available in an open-source pipeline, enabling researchers to upscale image acquisition and phenotyping of 3D cell culture.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
3d Cell Culture Technology ; Ai Imaging ; Cell State Prediction ; Microfluidics ; Stem Cells-on-chip ; Tracking Single Cells
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
2667-2375
e-ISSN
2667-2375
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 3,
Heft: 7,
Seiten: ,
Artikelnummer: 100523
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
50 Hampshire St, Floor 5, Cambridge, Ma 02139 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Helmholtz Pioneer Campus (HPC)
Institute of AI for Health (AIH)
POF Topic(s)
30201 - Metabolic Health
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Pioneer Campus
Enabling and Novel Technologies
PSP-Element(e)
G-510002-001
G-540007-001
Förderungen
Hightech Agenda Bayern
Helmholtz Association under the joint research school "Munich School for Data Science-MUDS
F. Hoffmann-La Roche
Helmholtz Pioneer Campus
European Research Council (ERC) under the European Union
Copyright
Erfassungsdatum
2023-10-06