PuSH - Publikationsserver des Helmholtz Zentrums München

Fuderer, S.* ; Kuttler, C.* ; Hoelscher, M.* ; Hinske, L.C.* ; Castelletti, N.

Data suggested hospitalization as critical indicator of the severity of the COVID-19 pandemic, even at its early stages.

Math. Biosci. Eng. 20, 10304-10338 (2023)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
COVID-19 has been spreading widely since January 2020, prompting the implementation of non-pharmaceutical interventions and vaccinations to prevent overwhelming the healthcare system. Our study models four waves of the epidemic in Munich over two years using a deterministic, biologybased mathematical model of SEIR type that incorporates both non-pharmaceutical interventions and vaccinations. We analyzed incidence and hospitalization data from Munich hospitals and used a twostep approach to fit the model parameters: first, we modeled incidence without hospitalization, and then we extended the model to include hospitalization compartments using the previous estimates as a starting point. For the first two waves, changes in key parameters, such as contact reduction and increasing vaccinations, were enough to represent the data. For wave three, the introduction of vaccination compartments was essential. In wave four, reducing contacts and increasing vaccinations were critical parameters for controlling infections. The importance of hospitalization data was highlighted, as it should have been included as a crucial parameter from the outset, along with incidence, to avoid miscommunication with the public. The emergence of milder variants like Omicron and a significant proportion of vaccinated people has made this fact even more evident.
Impact Factor
Scopus SNIP
Altmetric
2.600
0.824
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Data Analysis ; Differential Equation ; Hospitalization ; Modeling ; Prediction ; Sars-cov-2
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 1547-1063
e-ISSN 1551-0018
Quellenangaben Band: 20, Heft: 6, Seiten: 10304-10338 Artikelnummer: , Supplement: ,
Verlag Arizona State University
Verlagsort Po Box 2604, Springfield, Mo 65801-2604, United States
Begutachtungsstatus Peer reviewed
POF Topic(s) 30203 - Molecular Targets and Therapies
Forschungsfeld(er) Radiation Sciences
PSP-Element(e) G-501391-001
Förderungen University Hospital
German Ministry for Education and Research
Ludwig Maximilian University Munich
Bavarian State Ministry of Science and the Arts
Scopus ID 85151783063
PubMed ID 37322934
Erfassungsdatum 2023-10-06