Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Solvability in the sense of sequences for some non-Fredholm operators with the logarithmic Laplacian.
Monatsh. Math. 202, 751–771 (2023)
We establish the solvability of certain linear nonhomogeneous equations and demonstrate that under reasonable technical conditions the convergence in L2(Rd) of their right sides implies the existence and the convergence in L2(Rd) of the solutions. In the first part of the work the equation involves the logarithmic Laplacian. In the second part we generalize the results derived by incorporating a shallow, short-range scalar potential into the problem. The argument relies on the methods of the spectral and scattering theory for the non-Fredholm Schrödinger type operators. As distinct from the preceding articles on the subject, for the operators involved in the equations the essential spectra fill the whole real line.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Logarithmic Laplacian ; Non-fredholm Operators ; Solvability Conditions; Integrodifferential Equations; Properness Properties; Elliptic-operators; Holder Theory; Dirichlet; Systems
ISSN (print) / ISBN
0026-9255
Zeitschrift
Monatshefte für Mathematik
Quellenangaben
Band: 202,
Heft: 4,
Seiten: 751–771
Verlag
Universität Wien
Verlagsort
Prinz-eugen-strasse 8-10, A-1040 Vienna, Austria
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Computational Biology (ICB)