PuSH - Publikationsserver des Helmholtz Zentrums München

Efendiyev, M.A. ; Vougalter, V.*

Solvability in the sense of sequences for some non-Fredholm operators with the logarithmic Laplacian.

Monatsh. Math. 202, 751–771 (2023)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
We establish the solvability of certain linear nonhomogeneous equations and demonstrate that under reasonable technical conditions the convergence in L2(Rd) of their right sides implies the existence and the convergence in L2(Rd) of the solutions. In the first part of the work the equation involves the logarithmic Laplacian. In the second part we generalize the results derived by incorporating a shallow, short-range scalar potential into the problem. The argument relies on the methods of the spectral and scattering theory for the non-Fredholm Schrödinger type operators. As distinct from the preceding articles on the subject, for the operators involved in the equations the essential spectra fill the whole real line.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
0.900
1.032
1
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Logarithmic Laplacian ; Non-fredholm Operators ; Solvability Conditions; Integrodifferential Equations; Properness Properties; Elliptic-operators; Holder Theory; Dirichlet; Systems
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 0026-9255
Quellenangaben Band: 202, Heft: 4, Seiten: 751–771 Artikelnummer: , Supplement: ,
Verlag Universität Wien
Verlagsort Prinz-eugen-strasse 8-10, A-1040 Vienna, Austria
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Scopus ID 85149684292
Erfassungsdatum 2023-12-01