Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Automated Analysis of Diabetic Retinopathy Using Vessel Segmentation Maps as Inductive Bias.
In: (MIDOG 2022, DRAC 2022: Mitosis Domain Generalization and Diabetic Retinopathy Analysis). Berlin [u.a.]: Springer, 2023. 16-25 (Lect. Notes Comput. Sc. ; 13597 LNCS)
Recent studies suggest that early stages of diabetic retinopathy (DR) can be diagnosed by monitoring vascular changes in the deep vascular complex. In this work, we investigate a novel method for automated DR grading based on ultra-wide optical coherence tomography angiography (UW-OCTA) images. Our work combines OCTA scans with their vessel segmentations, which then serve as inputs to task specific networks for lesion segmentation, image quality assessment and DR grading. For this, we generate synthetic OCTA images to train a segmentation network that can be directly applied on real OCTA data. We test our approach on MICCAI 2022’s DR analysis challenge (DRAC). In our experiments, the proposed method performs equally well as the baseline model.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Classification ; Diabetic Retinopathy ; Eye ; Miccai Challenges ; Octa ; Segmentation ; Synthetic Data
ISSN (print) / ISBN
0302-9743
e-ISSN
1611-3349
Konferenztitel
MIDOG 2022, DRAC 2022: Mitosis Domain Generalization and Diabetic Retinopathy Analysis
Zeitschrift
Lecture Notes in Computer Science
Quellenangaben
Band: 13597 LNCS,
Seiten: 16-25
Verlag
Springer
Verlagsort
Berlin [u.a.]
Nichtpatentliteratur
Publikationen
Institut(e)
Institute for Tissue Engineering and Regenerative Medicine (ITERM)