PuSH - Publikationsserver des Helmholtz Zentrums München

Jo, T.* ; Kim, J.* ; Bice, P.* ; Huynh, K.* ; Wang, T.* ; Arnold, M. ; Meikle, P.J.* ; Giles, C.* ; Kaddurah-Daouk, R.* ; Saykin, A.J.* ; Nho, K.* ; Kueider-Paisley, A.* ; Doraiswamy, P.M.* ; Blach, C.* ; Moseley, A.* ; Thompson, W.* ; St John-Williams, L.* ; Mahmoudiandehkhordi, S.* ; Tenenbaum, J.* ; Welsh-Balmer, K.* ; Plassman, B.* ; Risacher, S.L.* ; Alzheimer's Disease Metabolomics Consortium (ADMC) (Kastenmüller, G.) ; Han, X.* ; Baillie, R.* ; Knight, R.* ; Dorrestein, P.* ; Brewer, J.* ; Mayer, E.* ; Labus, J.* ; Baldi, P.* ; Gupta, A.* ; Fiehn, O.* ; Barupal, D.* ; Meikle, P.* ; Mazmanian, S.* ; Rader, D.* ; Kling, M.* ; Shaw, L.* ; Trojanowski, J.* ; van Duijin, C.* ; Nevado-Holgado, A.* ; Bennett, D.* ; Krishnan, R.* ; Keshavarzian, A.* ; Vogt, R.* ; Ikram, A.* ; Hankemeier, T.* ; Price, N.* ; Funk, C.* ; Baloni, P.* ; Jia, W.* ; Wishart, D.* ; Brinton, R.* ; Chang, R.* ; Farrer, L.* ; Au, R.* ; Qiu, W.* ; Würtz, P.* ; Koal, T.* ; Mangravite, L.* ; Suhre, K.* ; Newman, J.* ; Moreno, H.* ; Foroud, T.* ; Sacks, F.* ; Jansson, J.* ; Weiner, M.W.* ; Aisen, P.* ; Petersen, R.* ; Jack, C.R.* ; Jagust, W.* ; Trojanowki, J.Q.* ; Toga, A.W.* ; Beckett, L.* ; Green, R.C.* ; Morris, J.C.* ; Perrin, R.J.* ; Shaw, L.M.* ; Khachaturian, Z.* ; Carrillo, M.* ; Potter, W.* ; Barnes, L.* ; Bernard, M.* ; Gonzalez, H.* ; Ho, C.* ; Hsiao, J.K.* ; Jackson, J.* ; Masliah, E.* ; Masterman, D.* ; Okonkwo, O.* ; Perrin, R.* ; Ryan, L.* ; Silverberg, N.* ; Fleisher, A.* ; Sacrey, D.T.* ; Fockler, J.* ; Conti, C.*

Circular-SWAT for deep learning based diagnostic classification of Alzheimer's disease: Application to metabolome data.

EBioMedicine 97:104820 (2023)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Background: Deep learning has shown potential in various scientific domains but faces challenges when applied to complex, high-dimensional multi-omics data. Alzheimer's Disease (AD) is a neurodegenerative disorder that lacks targeted therapeutic options. This study introduces the Circular-Sliding Window Association Test (c-SWAT) to improve the classification accuracy in predicting AD using serum-based metabolomics data, specifically lipidomics. Methods: The c-SWAT methodology builds upon the existing Sliding Window Association Test (SWAT) and utilizes a three-step approach: feature correlation analysis, feature selection, and classification. Data from 997 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) served as the basis for model training and validation. Feature correlations were analyzed using Weighted Gene Co-expression Network Analysis (WGCNA), and Convolutional Neural Networks (CNN) were employed for feature selection. Random Forest was used for the final classification. Findings: The application of c-SWAT resulted in a classification accuracy of up to 80.8% and an AUC of 0.808 for distinguishing AD from cognitively normal older adults. This marks a 9.4% improvement in accuracy and a 0.169 increase in AUC compared to methods without c-SWAT. These results were statistically significant, with a p-value of 1.04 × 10ˆ-4. The approach also identified key lipids associated with AD, such as Cer(d16:1/22:0) and PI(37:6). Interpretation: Our results indicate that c-SWAT is effective in improving classification accuracy and in identifying potential lipid biomarkers for AD. These identified lipids offer new avenues for understanding AD and warrant further investigation. Funding: The specific funding of this article is provided in the acknowledgements section.
Impact Factor
Scopus SNIP
Altmetric
11.100
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Alzheimer's Disease ; Deep Learning ; Lipidomics ; Machine Learning ; Metabolomics; Neural-networks
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 2352-3964
e-ISSN 2352-3964
Zeitschrift EBioMedicine
Quellenangaben Band: 97, Heft: , Seiten: , Artikelnummer: 104820 Supplement: ,
Verlag Elsevier
Verlagsort Amsterdam [u.a.]
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503891-001
Förderungen NIA NIH HHS
Scopus ID 85173462324
PubMed ID 37806288
Erfassungsdatum 2023-10-18