Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Deciphering the complexes of zinc ions and hen egg white lysozyme: Instrumental analysis, molecular docking, and antimicrobial assessment.
Spectrochim. Acta A 305:123490 (2024)
In the research presented in this manuscript, an intricate study has been carried out on the interaction of zinc ions with the hen egg white lysozyme (HEWL) protein. Utilizing a spectroscopic technique, the alterations that arise due to the binding of Zn2+ to the HEWL were scrutinized, underscoring the paramount significance of deprotonated carboxyl and thiol groups in the process of binding. The binding phenomena were substantiated using capillary electrophoresis integrated with inductively coupled plasma mass spectrometry (CE-ICP-MS). Further spectrometric assessments (MALDI-TOF MS and FT-ICR-MS) shed light on the direct interaction of zinc ions with the functional groups of the protein. Importantly, high-resolution FT-ICR-MS techniques elucidated the capability of a single protein molecule to bind to multiple zinc ions. The empirically derived spectroscopic data received additional confirmation via a molecular docking study of the Zn2+ binding process, which highlighted a substantial affinity between the predicted 3D model of zinc-lysozyme complexes. Predominantly, the interaction between the bound entities was observed at the cysteine residues. Lastly, the conducted antimicrobial tests revealed that the zinc-lysozyme complexes manifest an inhibitory effect against bacterial (E. coli and S. aureus) and yeast (C. albicans) strains.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Antimicrobial Activity ; Lysozyme ; Mass Spectrometry ; Zinc Ions ; Zinc-lysozyme Complexes; Capillary-electrophoresis; Mass-spectrometry; Binding; Proteins; Beta; Stability; Divalent; Raman; Ir
ISSN (print) / ISBN
1386-1425
e-ISSN
1873-3557
Zeitschrift
Spectrochimica acta, Part A
Quellenangaben
Band: 305,
Artikelnummer: 123490
Verlag
Elsevier
Verlagsort
Amsterdam [u.a.]
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Institut(e)
Research Unit Analytical BioGeoChemistry (BGC)
Förderungen
National Science Centre, Etiuda 7
European Union under the European Regional Development Fund
European Union under the European Regional Development Fund