PuSH - Publikationsserver des Helmholtz Zentrums München

Henao, J. ; Lauber, M.* ; Azevedo, M. ; Grekova, A. ; Theis, F.J. ; List, M.* ; Ogris, C. ; Schubert, B.

Multi-omics regulatory network inference in the presence of missing data.

Brief. Bioinform. 24:13 (2023)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
A key problem in systems biology is the discovery of regulatory mechanisms that drive phenotypic behaviour of complex biological systems in the form of multi-level networks. Modern multi-omics profiling techniques probe these fundamental regulatory networks but are often hampered by experimental restrictions leading to missing data or partially measured omics types for subsets of individuals due to cost restrictions. In such scenarios, in which missing data is present, classical computational approaches to infer regulatory networks are limited. In recent years, approaches have been proposed to infer sparse regression models in the presence of missing information. Nevertheless, these methods have not been adopted for regulatory network inference yet. In this study, we integrated regression-based methods that can handle missingness into KiMONo, a Knowledge guided Multi-Omics Network inference approach, and benchmarked their performance on commonly encountered missing data scenarios in single- and multi-omics studies. Overall, two-step approaches that explicitly handle missingness performed best for a wide range of random- and block-missingness scenarios on imbalanced omics-layers dimensions, while methods implicitly handling missingness performed best on balanced omics-layers dimensions. Our results show that robust multi-omics network inference in the presence of missing data with KiMONo is feasible and thus allows users to leverage available multi-omics data to its full extent.
Impact Factor
Scopus SNIP
Altmetric
9.500
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Data Imputation ; Data Missingness ; Lasso Model ; Multi-omics Integration ; Network Inference; Variable Selection; Imputed Data; Imputation; Expression; Equations; Models; Lasso
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 1467-5463
e-ISSN 1477-4054
Quellenangaben Band: 24, Heft: 5, Seiten: , Artikelnummer: 13 Supplement: ,
Verlag Oxford University Press
Verlagsort Great Clarendon St, Oxford Ox2 6dp, England
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Förderungen BMBF (German Federal Ministry of Education and Research) Project TRY-IBD
Hanns Seidel Foundation
Helmholtz International Lab Causal Cell Dynamics'
German Centre of Lung Research
Scopus ID 85172424861
PubMed ID 37670505
Erfassungsdatum 2023-10-18