möglich sobald bei der ZB eingereicht worden ist.
BEL: A Bag Embedding Loss for Transformer Enhances Multiple Instance Whole Slide Image Classification.
In: (Proceedings - International Symposium on Biomedical Imaging, 18-21 April 2023, Cartagena, Colombia). 345 E 47th St, New York, Ny 10017 Usa: Ieee, 2023. 5 (Proceedings - International Symposium on Biomedical Imaging ; 2023-April)
Multiple Instance Learning (MIL) has become the predominant approach for classification tasks on gigapixel histopathology whole slide images (WSIs). Within the MIL framework, single WSIs (bags) are decomposed into patches (instances), with only WSI-level annotation available. Recent MIL approaches produce highly informative bag level representations by utilizing the transformer architecture's ability to model the dependencies between instances. However, when applied to high magnification datasets, problems emerge due to the large number of instances and the weak supervisory learning signal. To address this problem, we propose to additionally train transformers with a novel Bag Embedding Loss (BEL). BEL forces the model to learn a discriminative bag-level representation by minimizing the distance between bag embeddings of the same class and maximizing the distance between different classes. We evaluate BEL with the Transformer architecture TransMIL on two publicly available histopathology datasets, BRACS and CAMELYON17. We show that with BEL, TransMIL outperforms the baseline models on both datasets, thus contributing to the clinically highly relevant AI-based tumor classification of histological patient material.
Altmetric
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Bag-level Representation Learning ; Computational Pathology ; Multiple Instance Learning ; Transformer ; Whole Slide Imaging
Sprache
englisch
Veröffentlichungsjahr
2023
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
1945-7928
e-ISSN
1945-8452
Konferenztitel
Proceedings - International Symposium on Biomedical Imaging
Konferzenzdatum
18-21 April 2023
Konferenzort
Cartagena, Colombia
Quellenangaben
Band: 2023-April,
Seiten: 5
Verlag
Ieee
Verlagsort
345 E 47th St, New York, Ny 10017 Usa
Institut(e)
Institute of AI for Health (AIH)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-540007-001
G-540004-001
G-540004-001
Förderungen
European Research Council (ERC) under the European Union
WOS ID
001062050500417
Scopus ID
85172085476
Erfassungsdatum
2023-10-18