A Diffusion Model Predicts 3D Shapes from 2D Microscopy Images.
In: (Proceedings - International Symposium on Biomedical Imaging, 18-21 April 2023, Cartagena, Colombia). 345 E 47th St, New York, Ny 10017 Usa: Ieee, 2023. 5 (Proceedings - International Symposium on Biomedical Imaging ; 2023-April)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Diffusion models are a special type of generative model, capable of synthesising new data from a learnt distribution. We introduce DISPR, a diffusion-based model for solving the inverse problem of three-dimensional (3D) cell shape prediction from two-dimensional (2D) single cell microscopy images. Using the 2D microscopy image as a prior, DISPR is conditioned to predict realistic 3D shape reconstructions. To showcase the applicability of DISPR as a data augmentation tool in a feature-based single cell classification task, we extract morphological features from the red blood cells grouped into six highly imbalanced classes. Adding features from the DISPR predictions to the three minority classes improved the macro F1 score from F1macro = 55.2 ± 4.6% to F1macro = 72.2 ± 4.9%. We thus demonstrate that diffusion models can be successfully applied to inverse biomedical problems, and that they learn to reconstruct 3D shapes with realistic morphological features from 2D microscopy images.
Altmetric
Weitere Metriken?
Publikationstyp
Artikel: Konferenzbeitrag
Dokumenttyp
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Keywords plus
ISSN (print) / ISBN
1945-7928
e-ISSN
1945-8452
ISBN
Bandtitel
Konferenztitel
Proceedings - International Symposium on Biomedical Imaging
Konferzenzdatum
18-21 April 2023
Konferenzort
Cartagena, Colombia
Konferenzband
Quellenangaben
Band: 2023-April,
Heft: ,
Seiten: 5
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Ieee
Verlagsort
345 E 47th St, New York, Ny 10017 Usa
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Institut(e)
Institute of AI for Health (AIH)
Förderungen
European Research Council (ERC) under the European Union
Copyright