möglich sobald bei der ZB eingereicht worden ist.
Approaching Peak Ground Truth.
In: (Proceedings - International Symposium on Biomedical Imaging, 18-21 April 2023, Cartagena, Colombia). 345 E 47th St, New York, Ny 10017 Usa: Ieee, 2023. 6 (Proceedings - International Symposium on Biomedical Imaging ; 2023-April)
Machine learning models are typically evaluated by computing similarity with reference annotations and trained by maximizing similarity with such. Especially in the biomedical domain, annotations are subjective and suffer from low inter-and intra-rater reliability. Since annotations only reflect one interpretation of the real world, this can lead to sub-optimal predictions even though the model achieves high similarity scores. Here, the theoretical concept of Peak Ground Truth (PGT) is introduced. PGT marks the point beyond which an increase in similarity with the reference annotation stops translating to better Real World Model Performance (RWMP). Additionally, a quantitative technique to approximate PGT by computing inter- and intra-rater reliability is proposed. Finally, four categories of PGT-aware strategies to evaluate and improve model performance are reviewed.
Altmetric
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Annotation ; Deep Learning ; Ground Truth ; Machine Learning ; Reference ; Segmentation; Label Noise; Classification
Sprache
englisch
Veröffentlichungsjahr
2023
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
1945-7928
e-ISSN
1945-8452
Konferenztitel
Proceedings - International Symposium on Biomedical Imaging
Konferzenzdatum
18-21 April 2023
Konferenzort
Cartagena, Colombia
Quellenangaben
Band: 2023-April,
Seiten: 6
Verlag
Ieee
Verlagsort
345 E 47th St, New York, Ny 10017 Usa
Institut(e)
Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
Institute for Tissue Engineering and Regenerative Medicine (ITERM)
Institute for Tissue Engineering and Regenerative Medicine (ITERM)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-530001-001
G-530006-001
G-505800-001
G-530006-001
G-505800-001
Förderungen
Helmut Horten Foundation
BMBF
DFG
ERC
Technical University of Munich - Institute for Advanced Study - German Excellence Initiative
Add-on Fellowship of the Joachim Herz Foundation
Helmholtz Association under the joint research school "Munich School for Data Science MUDS"
DComEX
Translational Brain Imaging Training Network (TRABIT) under the European Union's 'Horizon 2020' research & innovation program
Deutsche Forschungsgemeinschaft (DFG) through TUM International Graduate School of Science and Engineering (IGSSE)
Helmut Horten Foundation
BMBF
DFG
ERC
Technical University of Munich - Institute for Advanced Study - German Excellence Initiative
Add-on Fellowship of the Joachim Herz Foundation
Helmholtz Association under the joint research school "Munich School for Data Science MUDS"
DComEX
Translational Brain Imaging Training Network (TRABIT) under the European Union's 'Horizon 2020' research & innovation program
Deutsche Forschungsgemeinschaft (DFG) through TUM International Graduate School of Science and Engineering (IGSSE)
WOS ID
001062050500175
Scopus ID
85172164293
Erfassungsdatum
2023-10-18