F2FD: Fourier Perturbations for Denoising Cryo-Electron Tomograms and Comparison to Established Approaches.
    
    
        
    
    
        
        In: (Proceedings - International Symposium on Biomedical Imaging). 345 E 47th St, New York, Ny 10017 Usa: Ieee, 2023. 5 (Proceedings - International Symposium on Biomedical Imaging ; 2023-April)
    
    
		
		
		  DOI
 DOI
		
		
		
		
		  
		
		
			 möglich sobald  bei der ZB eingereicht worden ist.
		
     
    
		
		
			
				Cryo-electron tomography (Cryo-ET) is an imaging technique capable of visualizing vitrified biological samples at sub-nanometer resolution in 3D. However, beam-induced damage limits the applied electron dose and leads to a low signal-to-noise ratio. A popular method for denoising cryo-electron tomograms is Cryo-CARE, which performs noise-to-noise training, which relies on splitting the 2D tilt series into two separate halves. In practice, often the original tilt series is not available, but only the reconstructed volume, to which Cryo-CARE cannot be applied. More general denoising methods such as Noise2Void (N2V) or Self2Self with Dropout (S2Sd) do not require noisy image pairs and work with single noisy inputs. However, these methods implicitly assume noise to be pixel-independent, which is not the case for tomographic reconstructions. We propose F2Fd, a deep learning denoising algorithm that can be applied directly to reconstructed tomograms. F2Fd creates paired noisy patches by perturbing high frequencies in Fourier space and performs noise-to-noise training with them. We benchmark F2Fd with five other state-of-the-art denoising methods (including N2V, S2Sd and Cryo-CARE) on both synthetic and real tomograms. We show that the perturbation in Fourier space is better suited for Cryo-ET noise than noise from real space used by N2V and S2Sd. Moreover, we illustrate that Cryo-ET denoising not only leads to cleaner images, but also facilitates membrane segmentation as an important downstream task.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Konferenzbeitrag
    
 
    
        Dokumenttyp
        
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Benchmark ; Cryo-electron Tomography ; Denoising ; Fourier Perturbation ; Noise-to-noise
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2023
    
 
    
        Prepublished im Jahr 
        0
    
 
    
        HGF-Berichtsjahr
        2023
    
 
    
    
        ISSN (print) / ISBN
        1945-7928
    
 
    
        e-ISSN
        1945-8452
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        Proceedings - International Symposium on Biomedical Imaging
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 2023-April,  
	    Heft: ,  
	    Seiten: 5 
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Ieee
        
 
        
            Verlagsort
            345 E 47th St, New York, Ny 10017 Usa
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        
    
 
     
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
30203 - Molecular Targets and Therapies
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
Pioneer Campus
    
 
    
        PSP-Element(e)
        G-530006-001
G-510008-001
G-507100-001
    
 
    
        Förderungen
        BMBF
Helmholtz Association's Initiative and Networking Fund through Helmholtz AI
Boehringer Ingelheim Fonds
Munich School for Data Science
    
 
    
        Copyright
        
    
 	
    
    
    
    
        Erfassungsdatum
        2023-10-18