PuSH - Publikationsserver des Helmholtz Zentrums München

F2FD: Fourier Perturbations for Denoising Cryo-Electron Tomograms and Comparison to Established Approaches.

In: (Proceedings - International Symposium on Biomedical Imaging). 345 E 47th St, New York, Ny 10017 Usa: Ieee, 2023. 5 (Proceedings - International Symposium on Biomedical Imaging ; 2023-April)
DOI
Cryo-electron tomography (Cryo-ET) is an imaging technique capable of visualizing vitrified biological samples at sub-nanometer resolution in 3D. However, beam-induced damage limits the applied electron dose and leads to a low signal-to-noise ratio. A popular method for denoising cryo-electron tomograms is Cryo-CARE, which performs noise-to-noise training, which relies on splitting the 2D tilt series into two separate halves. In practice, often the original tilt series is not available, but only the reconstructed volume, to which Cryo-CARE cannot be applied. More general denoising methods such as Noise2Void (N2V) or Self2Self with Dropout (S2Sd) do not require noisy image pairs and work with single noisy inputs. However, these methods implicitly assume noise to be pixel-independent, which is not the case for tomographic reconstructions. We propose F2Fd, a deep learning denoising algorithm that can be applied directly to reconstructed tomograms. F2Fd creates paired noisy patches by perturbing high frequencies in Fourier space and performs noise-to-noise training with them. We benchmark F2Fd with five other state-of-the-art denoising methods (including N2V, S2Sd and Cryo-CARE) on both synthetic and real tomograms. We show that the perturbation in Fourier space is better suited for Cryo-ET noise than noise from real space used by N2V and S2Sd. Moreover, we illustrate that Cryo-ET denoising not only leads to cleaner images, but also facilitates membrane segmentation as an important downstream task.
Altmetric
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Konferenzbeitrag
Schlagwörter Benchmark ; Cryo-electron Tomography ; Denoising ; Fourier Perturbation ; Noise-to-noise
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 1945-7928
e-ISSN 1945-8452
Konferenztitel Proceedings - International Symposium on Biomedical Imaging
Quellenangaben Band: 2023-April, Heft: , Seiten: 5 Artikelnummer: , Supplement: ,
Verlag Ieee
Verlagsort 345 E 47th St, New York, Ny 10017 Usa
Institut(e) Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
Helmholtz Pioneer Campus (HPC)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s) 30205 - Bioengineering and Digital Health
30203 - Molecular Targets and Therapies
Forschungsfeld(er) Enabling and Novel Technologies
Pioneer Campus
PSP-Element(e) G-530006-001
G-510008-001
G-507100-001
Förderungen BMBF
Helmholtz Association's Initiative and Networking Fund through Helmholtz AI
Boehringer Ingelheim Fonds
Munich School for Data Science
Scopus ID 85172122400
Erfassungsdatum 2023-10-18