PuSH - Publikationsserver des Helmholtz Zentrums München

Amador, S.* ; Beuschlein, F.* ; Chauhan, V.P.* ; Favier, J.* ; Gil, D.* ; Greenwood, P.* ; de Krijger, R.R.* ; Kroiss, M.* ; Ortuño-Miquel, S.* ; Patocs, A.* ; Stell, A.* ; Walch, A.K.

Deep learning approaches applied to image classification of renal tumors: A systematic review.

Arch. Comp. Met. Engineering 31, 615-622 (2023)
Verlagsversion DOI
Open Access Hybrid
Creative Commons Lizenzvertrag
Renal cancer is one of the ten most common cancers in the population that affects 65,000 new patients a year. Nowadays, to predict pathologies or classify tumors, deep learning (DL) methods are effective in addition to extracting high-performance features and dealing with segmentation tasks. This review has focused on the different studies related to the application of DL techniques for the detection or segmentation of renal tumors in patients. From the bibliographic search carried out, a total of 33 records were identified in Scopus, PubMed and Web of Science. The results derived from the systematic review give a detailed description of the research objectives, the types of images used for analysis, the data sets used, whether the database used is public or private, and the number of patients involved in the studies. The first paper where DL is applied compared to other types of tumors was in 2019 which is relatively recent. Public collection and sharing of data sets are of utmost importance to increase research in this field as many studies use private databases. We can conclude that future research will identify many benefits, such as unnecessary incisions for patients and more accurate diagnoses. As research in this field grows, the amount of open data is expected to increase.
Impact Factor
Scopus SNIP
Altmetric
9.700
3.290
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Schlagwörter U-net; Segmentation
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 1134-3060
e-ISSN 1886-1784
Quellenangaben Band: 31, Heft: 2, Seiten: 615-622 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Van Godewijckstraat 30, 3311 Gz Dordrecht, Netherlands
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-500390-001
Förderungen FEDER "Una manera de hacer Europa"
Spanish Government
Scopus ID 85171305152
Erfassungsdatum 2023-12-04