Amador, S.* ; Beuschlein, F.* ; Chauhan, V.P.* ; Favier, J.* ; Gil, D.* ; Greenwood, P.* ; de Krijger, R.R.* ; Kroiss, M.* ; Ortuño-Miquel, S.* ; Patocs, A.* ; Stell, A.* ; Walch, A.K.
Deep learning approaches applied to image classification of renal tumors: A systematic review.
Arch. Comp. Met. Engineering 31, 615-622 (2023)
Renal cancer is one of the ten most common cancers in the population that affects 65,000 new patients a year. Nowadays, to predict pathologies or classify tumors, deep learning (DL) methods are effective in addition to extracting high-performance features and dealing with segmentation tasks. This review has focused on the different studies related to the application of DL techniques for the detection or segmentation of renal tumors in patients. From the bibliographic search carried out, a total of 33 records were identified in Scopus, PubMed and Web of Science. The results derived from the systematic review give a detailed description of the research objectives, the types of images used for analysis, the data sets used, whether the database used is public or private, and the number of patients involved in the studies. The first paper where DL is applied compared to other types of tumors was in 2019 which is relatively recent. Public collection and sharing of data sets are of utmost importance to increase research in this field as many studies use private databases. We can conclude that future research will identify many benefits, such as unnecessary incisions for patients and more accurate diagnoses. As research in this field grows, the amount of open data is expected to increase.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Typ der Hochschulschrift
Herausgeber
Schlagwörter
U-net; Segmentation
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
1134-3060
e-ISSN
1886-1784
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 31,
Heft: 2,
Seiten: 615-622
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Springer
Verlagsort
Van Godewijckstraat 30, 3311 Gz Dordrecht, Netherlands
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-500390-001
Förderungen
FEDER "Una manera de hacer Europa"
Spanish Government
Copyright
Erfassungsdatum
2023-12-04