Wagner, S. ; Reisenbüchler, D. ; West, N.P.* ; Niehues, J.M.* ; Zhu, J.* ; Foersch, S.* ; Veldhuizen, G.P.* ; Quirke, P.* ; Grabsch, H.I.* ; van den Brandt, P.A.* ; Hutchins, G.G.A.* ; Richman, S.D.* ; Yuan, T.* ; Langer, R.* ; Jenniskens, J.C.A.* ; Offermans, K.* ; Mueller, W.* ; Gray, R.* ; Gruber, S.B.* ; Greenson, J.K.* ; Rennert, G.* ; Bonner, J.D.* ; Schmolze, D.* ; Jonnagaddala, J.* ; Hawkins, N.J.* ; Ward, R.L.* ; Morton, D.* ; Seymour, M.* ; Magill, L.* ; Nowak, M.* ; Hay, J.* ; Koelzer, V.H.* ; Church, D.N.* ; Church, D.* ; Domingo, E.* ; Edwards, J.* ; Glimelius, B.* ; Gogenur, I.* ; Harkin, A.* ; Iveson, T.* ; Jaeger, E.* ; Kelly, C.* ; Kerr, R.* ; Maka, N.* ; Morgan, H.* ; Oien, K.* ; Orange, C.* ; Palles, C.* ; Roxburgh, C.* ; Sansom, O.* ; Saunders, M.* ; Tomlinson, I.* ; Matek, C. ; Geppert, C.* ; Peng, C.* ; Zhi, C.* ; Ouyang, X.* ; James, J.A.* ; Loughrey, M.B.* ; Salto-Tellez, M.* ; Brenner, H.* ; Hoffmeister, M.* ; Truhn, D.* ; Schnabel, J.A. ; Boxberg, M.* ; Peng, T. ; Kather, J.N.*
Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study.
Cancer Cell 41, 1650-1661.e4 (2023)
Deep learning (DL) can accelerate the prediction of prognostic biomarkers from routine pathology slides in colorectal cancer (CRC). However, current approaches rely on convolutional neural networks (CNNs) and have mostly been validated on small patient cohorts. Here, we develop a new transformer-based pipeline for end-to-end biomarker prediction from pathology slides by combining a pre-trained transformer encoder with a transformer network for patch aggregation. Our transformer-based approach substantially improves the performance, generalizability, data efficiency, and interpretability as compared with current state-of-the-art algorithms. After training and evaluating on a large multicenter cohort of over 13,000 patients from 16 colorectal cancer cohorts, we achieve a sensitivity of 0.99 with a negative predictive value of over 0.99 for prediction of microsatellite instability (MSI) on surgical resection specimens. We demonstrate that resection specimen-only training reaches clinical-grade performance on endoscopic biopsy tissue, solving a long-standing diagnostic problem.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Artificial Intelligence ; Biomarker ; Colorectal Cancer ; Deep Learning ; Microsatellite Instability ; Multiple Instance Learning ; Transformer; Colon-cancer; Microsatellite Instability; Survival; Decision; Model
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
1535-6108
e-ISSN
1878-3686
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 41,
Heft: 9,
Seiten: 1650-1661.e4
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Cell Press
Verlagsort
Cambridge, Mass.
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-530006-001
G-503800-001
G-540007-001
G-507100-001
Förderungen
NCI NIH HHS
Medical Research Council
Cancer Research UK
Department of Health
Copyright
Erfassungsdatum
2023-10-18