PuSH - Publikationsserver des Helmholtz Zentrums München

Ziller, A.* ; Erdur, A.C.* ; Jungmann, F.* ; Rueckert, D.* ; Braren, R.* ; Kaissis, G.

Exploiting Segmentation Labels and Representation Learning to Forecast Therapy Response of PDAC Patients.

In: (Proceedings - International Symposium on Biomedical Imaging). 345 E 47th St, New York, Ny 10017 Usa: Ieee, 2023. 5 (Proceedings - International Symposium on Biomedical Imaging ; 2023-April)
DOI
The prediction of pancreatic ductal adenocarcinoma therapy response is a clinically challenging and important task in this high-mortality tumour entity. The training of neural networks able to tackle this challenge is impeded by a lack of large datasets and the difficult anatomical localisation of the pancreas. Here, we propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy which is based on the Response Evaluation Criteria in Solid Tumors (RECIST) score, a standardised method for cancer response evaluation by clinicians as well as tumour markers, and clinical evaluation of the patients. We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning. Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.
Altmetric
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Konferenzbeitrag
Schlagwörter Pdac ; Personalised Treatment ; Representation Learning ; Transfer Learning
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 1945-7928
e-ISSN 1945-8452
Konferenztitel Proceedings - International Symposium on Biomedical Imaging
Quellenangaben Band: 2023-April, Heft: , Seiten: 5 Artikelnummer: , Supplement: ,
Verlag Ieee
Verlagsort 345 E 47th St, New York, Ny 10017 Usa
Institut(e) Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-530014-001
G-507100-001
Förderungen German Cancer Consortium Joint Funding UPGRADE Programme: Subtyping of Pancreatic Cancer based on radiographic and pathological Features
German Research Foundation
European Research Council
Scopus ID 85166004074
Erfassungsdatum 2023-10-18