möglich sobald bei der ZB eingereicht worden ist.
blob loss: Instance Imbalance Aware Loss Functions for Semantic Segmentation.
In: (Information Processing in Medical Imaging). Berlin [u.a.]: Springer, 2023. 755-767 (Lect. Notes Comput. Sc. ; 13939 LNCS)
Deep convolutional neural networks (CNN) have proven to be remarkably effective in semantic segmentation tasks. Most popular loss functions were introduced targeting improved volumetric scores, such as the Dice coefficient (DSC). By design, DSC can tackle class imbalance, however, it does not recognize instance imbalance within a class. As a result, a large foreground instance can dominate minor instances and still produce a satisfactory DSC. Nevertheless, detecting tiny instances is crucial for many applications, such as disease monitoring. For example, it is imperative to locate and surveil small-scale lesions in the follow-up of multiple sclerosis patients. We propose a novel family of loss functions, blob loss, primarily aimed at maximizing instance-level detection metrics, such as F1 score and sensitivity. Blob loss is designed for semantic segmentation problems where detecting multiple instances matters. We extensively evaluate a DSC-based blob loss in five complex 3D semantic segmentation tasks featuring pronounced instance heterogeneity in terms of texture and morphology. Compared to soft Dice loss, we achieve 5% improvement for MS lesions, 3% improvement for liver tumor, and an average 2% improvement for microscopy segmentation tasks considering F1 score.
Web of Science
Times Cited
Times Cited
Altmetric
1
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Instance Imbalance Awareness ; Lightsheet Microscopy ; Multiple Sclerosis ; Semantic Segmentation Loss Function
Sprache
englisch
Veröffentlichungsjahr
2023
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
0302-9743
e-ISSN
1611-3349
Konferenztitel
Information Processing in Medical Imaging
Zeitschrift
Lecture Notes in Computer Science
Quellenangaben
Band: 13939 LNCS,
Seiten: 755-767
Verlag
Springer
Verlagsort
Berlin [u.a.]
Institut(e)
Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
Institute for Tissue Engineering and Regenerative Medicine (ITERM)
Institute of Radiation Medicine (IRM)
Institute for Tissue Engineering and Regenerative Medicine (ITERM)
Institute of Radiation Medicine (IRM)
POF Topic(s)
30205 - Bioengineering and Digital Health
30203 - Molecular Targets and Therapies
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Enabling and Novel Technologies
Radiation Sciences
Radiation Sciences
PSP-Element(e)
G-530001-001
G-505800-001
G-501300-001
G-505800-001
G-501300-001
WOS ID
001116102900058
Scopus ID
85163977420
Erfassungsdatum
2023-10-18