PuSH - Publikationsserver des Helmholtz Zentrums München

Hornung, R.* ; Ludwigs, F.* ; Hagenberg, J. ; Boulesteix, A.L.*

Prediction approaches for partly missing multi-omics covariate data: A literature review and an empirical comparison study.

WIREs Comput. Sta. 16:e1626 (2024)
Verlagsversion DOI
Open Access Hybrid
Creative Commons Lizenzvertrag
As the availability of omics data has increased in the last few years, more multi-omics data have been generated, that is, high-dimensional molecular data consisting of several types such as genomic, transcriptomic, or proteomic data, all obtained from the same patients. Such data lend themselves to being used as covariates in automatic outcome prediction because each omics type may contribute unique information, possibly improving predictions compared to using only one omics data type. Frequently, however, in the training data and the data to which automatic prediction rules should be applied, the test data, the different omics data types are not available for all patients. We refer to this type of data as block-wise missing multi-omics data. First, we provide a literature review on existing prediction methods applicable to such data. Subsequently, using a collection of 13 publicly available multi-omics data sets, we compare the predictive performances of several of these approaches for different block-wise missingness patterns. Finally, we discuss the results of this empirical comparison study and draw some tentative conclusions. This article is categorized under: Applications of Computational Statistics > Genomics/Proteomics/Genetics Applications of Computational Statistics > Health and Medical Data/Informatics Statistical and Graphical Methods of Data Analysis > Analysis of High Dimensional Data.
Impact Factor
Scopus SNIP
Altmetric
4.400
2.041
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Schlagwörter Missing Values ; Molecular Data ; Multi-omics ; Prediction; Imputation; Shrinkage
Sprache englisch
Veröffentlichungsjahr 2024
Prepublished im Jahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 1939-5108
e-ISSN 1939-0068
Quellenangaben Band: 16, Heft: 1, Seiten: , Artikelnummer: e1626 Supplement: ,
Verlag Wiley
Verlagsort 111 River St, Hoboken 07030-5774, Nj Usa
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Scopus ID 85161427980
Erfassungsdatum 2023-12-08