möglich sobald bei der ZB eingereicht worden ist.
Accessibility of covariance information creates vulnerability in Federated Learning frameworks.
Bioinformatics 39:9 (2023)
MOTIVATION: Federated Learning (FL) is gaining traction in various fields as it enables integrative data analysis without sharing sensitive data, such as in healthcare. However, the risk of data leakage caused by malicious attacks must be considered. In this study, we introduce a novel attack algorithm that relies on being able to compute sample means, sample covariances, and construct known linearly independent vectors on the data owner side. RESULTS: We show that these basic functionalities, which are available in several established FL frameworks, are sufficient to reconstruct privacy-protected data. Additionally, the attack algorithm is robust to defense strategies that involve adding random noise. We demonstrate the limitations of existing frameworks and propose potential defense strategies analyzing the implications of using differential privacy. The novel insights presented in this study will aid in the improvement of FL frameworks. AVAILABILITY AND IMPLEMENTATION: The code examples are provided at GitHub (https://github.com/manuhuth/Data-Leakage-From-Covariances.git). The CNSIM1 dataset, which we used in the manuscript, is available within the DSData R package (https://github.com/datashield/DSData/tree/main/data).
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
ISSN (print) / ISBN
1367-4803
Zeitschrift
Bioinformatics
Quellenangaben
Band: 39,
Heft: 9
Artikelnummer: 9
Verlag
Oxford University Press
Verlagsort
Oxford
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Computational Biology (ICB)
Förderungen
European Union
ORCHESTRA project
Helmholtz Association-Munich School for Data Science (MUDS)
University of Bonn
German Ministry for Education and Research (Deutches Bundesminsterium fur Bildung und Forschung, BMBF)
German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)
ORCHESTRA project
Helmholtz Association-Munich School for Data Science (MUDS)
University of Bonn
German Ministry for Education and Research (Deutches Bundesminsterium fur Bildung und Forschung, BMBF)
German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)