Posterior marginalization accelerates Bayesian inference for dynamical models of biological processes.
iScience 26:108083 (2023)
Bayesian inference is an important method in the life and natural sciences for learning from data. It provides information about parameter and prediction uncertainties. Yet, generating representative samples from the posterior distribution is often computationally challenging. Here, we present an approach that lowers the computational complexity of sample generation for dynamical models with scaling, offset, and noise parameters. The proposed method is based on the marginalization of the posterior distribution. We provide analytical results for a broad class of problems with conjugate priors and show that the method is suitable for a large number of applications. Subsequently, we demonstrate the benefit of the approach for applications from the field of systems biology. We report an improvement up to 50 times in the effective sample size per unit of time. As the scheme is broadly applicable, it will facilitate Bayesian inference in different research fields.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Biological Sciences ; Mathematical Biosciences ; Systems Biology; Parameter-estimation; Systems
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
2589-0042
e-ISSN
2589-0042
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 26,
Heft: 11,
Seiten: ,
Artikelnummer: 108083
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Amsterdam ; Bosten ; London ; New York ; Oxford ; Paris ; Philadelphia ; San Diego ; St. Louis
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-553800-001
Förderungen
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy
University of Bonn
German Federal Ministry of Education and Research
Copyright
Erfassungsdatum
2023-11-28