möglich sobald bei der ZB eingereicht worden ist.
Topological Singularity Detection at Multiple Scales.
In: (Proceedings of Machine Learning Research). 2023. 35175-35197 (Proceedings of Machine Learning Research ; 202)
The manifold hypothesis, which assumes that data lies on or close to an unknown manifold of low intrinsic dimension, is a staple of modern machine learning research. However, recent work has shown that real-world data exhibits distinct non-manifold structures, i.e. singularities, that can lead to erroneous findings. Detecting such singularities is therefore crucial as a precursor to interpolation and inference tasks. We address this issue by developing a topological framework that (i) quantifies the local intrinsic dimension, and (ii) yields a Euclidicity score for assessing the 'manifoldness' of a point along multiple scales. Our approach identifies singularities of complex spaces, while also capturing singular structures and local geometric complexity in image data.
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Sprache
englisch
Veröffentlichungsjahr
2023
HGF-Berichtsjahr
2023
Konferenztitel
Proceedings of Machine Learning Research
Quellenangaben
Band: 202,
Seiten: 35175-35197
Institut(e)
Human-Centered AI (HCA)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-540003-001
Scopus ID
85174423728
Erfassungsdatum
2023-11-28