PuSH - Publikationsserver des Helmholtz Zentrums München

Topological Singularity Detection at Multiple Scales.

In: (Proceedings of Machine Learning Research). 2023. 35175-35197 (Proceedings of Machine Learning Research ; 202)
Verlagsversion
The manifold hypothesis, which assumes that data lies on or close to an unknown manifold of low intrinsic dimension, is a staple of modern machine learning research. However, recent work has shown that real-world data exhibits distinct non-manifold structures, i.e. singularities, that can lead to erroneous findings. Detecting such singularities is therefore crucial as a precursor to interpolation and inference tasks. We address this issue by developing a topological framework that (i) quantifies the local intrinsic dimension, and (ii) yields a Euclidicity score for assessing the 'manifoldness' of a point along multiple scales. Our approach identifies singularities of complex spaces, while also capturing singular structures and local geometric complexity in image data.
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Konferenzbeitrag
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
Konferenztitel Proceedings of Machine Learning Research
Quellenangaben Band: 202, Heft: , Seiten: 35175-35197 Artikelnummer: , Supplement: ,
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-540003-001
Scopus ID 85174423728
Erfassungsdatum 2023-11-28