PuSH - Publikationsserver des Helmholtz Zentrums München

Egorov, D.* ; Kopaliani, I.* ; Ameln, A.K.* ; Speier, S. ; Deussen, A.*

Mechanism of pro-MMP9 activation in co-culture of pro-inflammatory macrophages and cardiomyocytes.

Exp. Cell Res. 434, 113868 (2024)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
OBJECTIVE: A wide range of cardiac diseases is associated with inflammation. "Inflamed" heart tissue is infiltrated with pro-inflammatory macrophages which extensively secrete matrix metalloproteinase 9 (MMP9), a regulator of extracellular matrix turnover. As MMP9 is released from macrophages in a latent form, it requires activation. The present study addresses the role of cardiomyocytes in the course of this activation process. METHODS AND RESULTS: In mono- and co-cultures of pro-inflammatory rat macrophages (bone marrow-derived and peritoneal) and cardiomyocytes (H9C2 cell line) gelatin zymography demonstrated that activated macrophages robustly secreted latent pro-MMP9, whereas cardiomyocytes could not produce the enzyme. Co-culturing of the two cell species was critical for pro-MMP9 activation and was also accompanied by processing of cardiomyocyte-secreted pro-MMP2. A cascade of pro-MMP9 activation was initiated on macrophage membrane with pro-MMP2 cleavage. Namely, pro-inflammatory macrophages expressed an active membrane type 1 MMP (MT1MMP), which activated pro-MMP2, which in turn converted pro-MMP9. Downregulation of MT1MMP in macrophages by siRNA abolished activation of both pro-MMP2 and pro-MMP9 in co-culture. In addition, both cell species secreted MMP13 as a further pro-MMP9 activator. In co-culture, activation of pro-MMP13 occurred on membranes of macrophages and was enhanced in presence of active MMP2. Using incubations with recombinant MMPs and isolated macrophage membranes, we demonstrated that while both MMP2 and MMP13 individually had the ability to activate pro-MMP9, their combined action provided a synergistic effect. CONCLUSION: Activation of pro-MMP9 in a co-culture of pro-inflammatory macrophages and cardiomyocytes was the result of a complex interaction of several MMPs on the cell membrane and in the extracellular space. Both cell types contributed critically to pro-MMP9 processing.
Impact Factor
Scopus SNIP
Altmetric
3.300
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Cardiac Remodeling ; Cardiovascular Disease ; Extracellular Proteases ; Wound Healing; Heart-failure Rats; Matrix Metalloproteinases; Extracellular-matrix; Myocardial-infarction; Matrix-metalloproteinase-9; Expression; Mmp; Deletion; Timp-2; Form
Sprache englisch
Veröffentlichungsjahr 2024
Prepublished im Jahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 1090-2422
e-ISSN 0014-4827
Quellenangaben Band: 434, Heft: 1, Seiten: 113868 Artikelnummer: , Supplement: ,
Verlag Academic Press
Verlagsort Orlando, Fla.
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Pancreatic Islet Research (IPI)
POF Topic(s) 90000 - German Center for Diabetes Research
Forschungsfeld(er) Helmholtz Diabetes Center
PSP-Element(e) G-502600-005
Förderungen Faculty of Medicine at Technische Universitat Dresden
Scopus ID 85179477424
PubMed ID 38043722
Erfassungsdatum 2023-12-15