PuSH - Publikationsserver des Helmholtz Zentrums München

Andreeva, R.* ; Limbeck, K. ; Rieck, B. ; Sarkar, R.*

Metric Space Magnitude and Generalisation in Neural Networks.

In: (Proceedings of Machine Learning Research). 2023. 242-253 (Proceedings of Machine Learning Research ; 221)
Verlagsversion
Open Access Hybrid
Deep learning models have seen significant successes in numerous applications, but their inner workings remain elusive. The purpose of this work is to quantify the learning process of deep neural networks through the lens of a novel topological invariant called magnitude. Magnitude is an isometry invariant; its properties are an active area of research as it encodes many known invariants of a metric space. We use magnitude to study the internal representations of neural networks and propose a new method for determining their generalisation capabilities. Moreover, we theoretically connect magnitude dimension and the generalisation error, and demonstrate experimentally that the proposed framework can be a good indicator of the latter.
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Konferenzbeitrag
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
Konferenztitel Proceedings of Machine Learning Research
Quellenangaben Band: 221, Heft: , Seiten: 242-253 Artikelnummer: , Supplement: ,
Institut(e) Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
Institute of AI for Health (AIH)
POF Topic(s) 30205 - Bioengineering and Digital Health
30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-530010-001
G-540003-001
Scopus ID 85178667866
Erfassungsdatum 2023-12-18