PuSH - Publikationsserver des Helmholtz Zentrums München

Eckardt, F.* ; Mittas, R. ; Horlava, N. ; Schiefelbein, J.* ; Asani, B.* ; Michalakis, S.* ; Gerhardt, M.* ; Priglinger, C.* ; Keeser, D.* ; Koutsouleris, N.* ; Priglinger, S.* ; Theis, F.J. ; Peng, T. ; Schworm, B.*

Deep Learning based retinal layer segmentation in optical coherence tomography scans of patients with inherited retinal diseases.

Klin. Monatsbl. Augenheilkd., DOI: 10.1055/a-2227-3742 (2023)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Background: On optical coherence tomography (OCT) scans of patients with inherited retinal diseases (IRDs), the outer nuclear layer (ONL) thickness measurement has been well established as a surrogate marker for photoreceptor preservation. Current automatic segmentation tools fail in OCT segmentation in IRDs, and manual segmentation is time consuming. Methods and Material: Patients with IRD and the availability of an OCT scan were screened for the present study. Additionally, OCT scans of patients without retinal disease were included, to provide training data for the artificial intelligence (AI). We trained a U-net based model on healthy patients and applied a domain adaption technique to IRD patients' scans. Results: We established an AI-based image segmentation algorithm that reliably segments the ONL in OCT scans of IRD patients. In a test dataset, the dice-score of the algorithm was 98.7%. Furthermore, we generated thickness maps of the full retinal thickness and the ONL layer for each patient. Conclusion: Accurate segmentation of anatomical layers on OCT scans plays a crucial role for predictive models linking retinal structure to visual function. The here-presented OCT image segmentation algorithm could provide the basis for further studies on IRDs.
Impact Factor
Scopus SNIP
Altmetric
0.800
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache deutsch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 0023-2165
e-ISSN 1439-3999
Verlag Thieme
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Scopus ID 85179780835
PubMed ID 38086412
Erfassungsdatum 2023-12-20