Solvability of some Fredholm integro-differential equations with mixed diffusion in a square.
Discret. Contin. Dyn. Syst.-Ser. S, DOI: 10.3934/dcdss.2023124 (2023)
We demonstrate the existence in the sense of sequences of solutions for some integro-differential type problems in a square in two dimensions with periodic boundary conditions. They contain the normal diffusion in one direction and the superdiffusion in the other direction. We work in a constrained subspace of H2 using the fixed point technique. The elliptic equation involves a second order differential operator satisfying the Fredholm property. It is established that, under reasonable technical assumptions, the convergence in the appropriate function spaces of the integral kernels yields the existence and convergence in H02 of the solutions. We generalize the results obtained in our preceding work [11] for the analogous equation considered in the whole R2 which contained a non-Fredholm operator.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Solvability conditions; Fredholm operators; Key phrases; tions; mixed diffusion; Properness Properties; Traveling-waves; Systems
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
1937-1632
e-ISSN
1937-1179
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band:
Heft:
Seiten:
Artikelnummer:
Supplement:
Reihe
Verlag
American Institute of Mathematical Sciences (AIMS)
Verlagsort
Po Box 2604, Springfield, Mo 65801-2604, United States
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-001
Förderungen
Copyright
Erfassungsdatum
2024-01-15