Differentially private graph neural networks for whole-graph classification.
IEEE Trans. Pattern Anal. Mach. Intell. 45, 7308-7318 (2023)
Graph Neural Networks (GNNs) have established themselves as state-of-the-art for many machine learning applications such as the analysis of social and medical networks. Several among these datasets contain privacy-sensitive data. Machine learning with differential privacy is a promising technique to allow deriving insight from sensitive data while offering formal guarantees of privacy protection. However, the differentially private training of GNNs has so far remained under-explored due to the challenges presented by the intrinsic structural connectivity of graphs. In this work, we introduce a framework for differential private graph-level classification. Our method is applicable to graph deep learning on multi-graph datasets and relies on differentially private stochastic gradient descent (DP-SGD). We show results on a variety of datasets and evaluate the impact of different GNN architectures and training hyperparameters on model performance for differentially private graph classification, as well as the scalability of the method on a large medical dataset. Our experiments show that DP-SGD can be applied to graph classification tasks with reasonable utility losses. Furthermore, we apply explainability techniques to assess whether similar representations are learned in the private and non-private settings. Our results can also function as robust baselines for future work in this area.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Training; Privacy; Task analysis; Graph neural networks; Data models; Stochastic processes; Image edge detection; Differential privacy; graph neural networks; Database
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
0162-8828
e-ISSN
1939-3539
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 45,
Heft: 6,
Seiten: 7308-7318
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Institute of Electrical and Electronics Engineers (IEEE)
Verlagsort
10662 Los Vaqueros Circle, Po Box 3014, Los Alamitos, Ca 90720-1314 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
Institute for Tissue Engineering and Regenerative Medicine (ITERM)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-507100-001
G-505800-001
Förderungen
Copyright
Erfassungsdatum
2024-01-15