PuSH - Publikationsserver des Helmholtz Zentrums München

Feiner, L.F.* ; Menten, M.J.* ; Hammernik, K.* ; Hager, P.* ; Huang, W.* ; Rueckert, D.* ; Braren, R.F.* ; Kaissis, G.

Propagation and attribution of uncertainty in medical imaging pipelines.

In: (5th International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE), 12 October 2023, Vancouver, CANADA). Berlin [u.a.]: Springer, 2023. 1-11 (Lect. Notes Comput. Sc. ; 14291)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Uncertainty estimation, which provides a means of building explainable neural networks for medical imaging applications, have mostly been studied for single deep learning models that focus on a specific task. In this paper, we propose a method to propagate uncertainty through cascades of deep learning models in medical imaging pipelines. This allows us to aggregate the uncertainty in later stages of the pipeline and to obtain a joint uncertainty measure for the predictions of later models. Additionally, we can separately report contributions of the aleatoric, data-based, uncertainty of every component in the pipeline. We demonstrate the utility of our method on a realistic imaging pipeline that reconstructs undersampled brain and knee magnetic resonance (MR) images and subsequently predicts quantitative information from the images, such as the brain volume, or knee side or patient's sex. We quantitatively show that the propagated uncertainty is correlated with input uncertainty and compare the proportions of contributions of pipeline stages to the joint uncertainty measure.
Altmetric
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Konferenzbeitrag
Schlagwörter Tasks
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 0302-9743
e-ISSN 1611-3349
Konferenztitel 5th International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE)
Konferzenzdatum 12 October 2023
Konferenzort Vancouver, CANADA
Quellenangaben Band: 14291, Heft: , Seiten: 1-11 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Berlin [u.a.]
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-507100-001
Erfassungsdatum 2024-01-18